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This paper reports analytical studies of problems that involve the motion of plane
elastic structures under conditions of heavy fluid loading. The main aspect concerns
the description of the vibration response of a thin elastic plate (or membrane), of finite
extent in at least one dimension, when the structure is excited by concentrated
mechanical drive along a line or at a point; and as part of this the possibility of
resonant response is discussed, and the resonance conditions and free modes of
oscillation are obtained. There is also some discussion of the acoustic fields radiated
by the structures under localized mechanical excitation.

The analysis makes extensive use of results for the reflection of a structural wave
(subject to heavy fluid loading) at an edge, and the paper gives results for that
reflection process covering waves incident normally on eight different edge configu-
rations and waves incident obliquely on two edge configurations. These results include
the reflection coeflicient (whose magnitude is unity in the leading-order approximation
of low-frequency heavy fluid loading), and the amplitude and directivity of the
edge-scattered sound. By using the argument that edge reflection is a local process,
the response is then calculated for a strip plate, under both line and point forcing,
and the response is, for the first time, obtained for structures finite in both dimensions
and subject to heavy fluid loading. Specifically, solutions are given here for a circular
plate with eccentric drive, and for a membrane model of a rectangular panel, with
central point drive. For some conditions and geometries expressions in simple form
are found for the natural frequencies and mode shapes, and for the off-resonance
forced response. Expressions for the drive admittances are found which display a
variety of interesting features.

1. INTRODUCTION

1.1. General remarks

322
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325
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331

337

338
340

Vibrating elastic structures are to be found in many situations in Nature and in engineering.

Only rarely do structures vibrate in a vacuum ; commonly they are embedded in a fluid medium

which may exert a significant pressure field, or fluid loading, on the structure. Fluid loading is

a non-local mechanism; an attempt to deform a structure locally can lead to the generation

of a slowly-decaying pressure field in the fluid and to consequent deformation of the structure
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further away. Fluid loading is not connected in any essential way with fluid compressibility.
In some cases it may be important that the fluid motions producing the fluid loading have a
phase and amplitude structure characteristic of acoustic perturbations; for example, the
dissipation attributable to the radiation of acoustic energy to infinity may be a significant
mechanism for limiting the vibration amplitude of a structural element near a resonance
condition, while there are also many situations in which one wants to know the pattern of
structural vibration produced in response to an incident acoustic field, or the acoustic field
generated when the structure is driven by some mechanical excitation. In many other cases
the length and time scales of interest are such that compressibility is of no significance.
Problems in which there is significant fluid loading are not easy to handle theoretically, even
when the fluid has no mean motion and a very simple dynamic model and geometry are
adopted for the structure. The problems may usually be treated as linear, but they have, in
essence, the nature of wave diffraction problems in which all the familiar difficulties of
diffraction theory are compounded by boundary conditions which couple, in a non-local way,
surface waves on the structure to bulk waves in the fluid. As a satisfactory theoretical treatment
of diffraction by a rigid strip has yet to be given, one can hardly expect a satisfactory treatment
of the vibration of a finite fluid-loaded structure of any shape or mechanical properties.
Considerable progress has, none the less, been made recently in the theory of fluid-loaded
structures and it is the aim of the present paper to contribute to that progress with studies of
finite geometries (circular and rectangular) under localized mechanical excitation and subject
to ‘heavy’ fluid loading. That term (‘heavy’) is used with different implications by different
authors, and we think it most important to define exactly what we mean by it and how our
usage differs from that of others whose work appears partly to overlap with ours. After referring
(in §1.2 below) to the appropriate prior work, we discuss the quantification of fluid loading
(and introduce appropriate notation) in §1.3, relating this paper in § 1.4 to our previous work.

1.2. Review of other work

The simplest geometry, in which the structure is plane, homogeneous and infinite in extent,
has been widely studied. Usually it is assumed that the same static inviscid fluid is present on
both sides, or that there is a vacuum on one side, though it is formally easy to deal with different
fluids. The structure may be idealized as a membrane, as a thin elastic plate or as a thick elastic
plate (with the Timoshenko—Mindlin equation of motion), and the fields generated by a point
source in the fluid or by a concentrated mechanical line force and moment or point-force
excitation have been studied. Often the results are confined to the very distant structural and
fluid wave fields or to the drive point behaviour, partly because these are quantities of physical
interest and partly because there are efficient analytical techniques for obtaining them. More
general results (covering all distances from an excitation and all frequencies) have been given
by Crighton (1983), though that description is for the membrane model of the structure and
is confined to the structural vibration field. The points mentioned above are covered in Morse
& Ingard (1968, ch. 10), Junger & Feit (1972, ch. 7), Gutin (1965); Feit (1966) ; Nayak (1970);
Crighton (1972, 1977, 1979) and Crighton & Innes (1983) and in numerous other papers.

The simplest inhomogeneities on a plane structure are those created by ribs and other
supports (at points or along lines) on an otherwise infinite homogeneous structure. Formal
solutions to problems involving such inhomogeneities can be obtained in terms of a fundamental
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(Green function) solution to the homogeneous problem. It is easy to deal thoroughly with the
single inhomogeneity (Nayak 1970; Crighton & Maidanik 1981) though more interesting are
multiple rib problems where the vacuum dynamics would lead to resonance possibilities. These
have been examined by Leppington (1978), Stepanishen (1978) and others in the ‘light’ fluid
loading limit (where one might expect the vacuum resonance conditions still to be important)
and in ‘heavy’ fluid loading by Crighton & Innes (1983) (where, not so obviously, near-
resonance can also occur under certain conditions). Periodic rib arrays have also been studied,
both with regard to their diffraction grating behaviour (Leppington 1978; Stepanishen 1978;
Konovalyuk 1969; Eatwell & Butler 1982; Mace 19804, 5) and with regard to their pass and
stop band structure under heavy fluid loading, with implications for energy transfer down a
periodically-ribbed structure under fluid loading (Crighton 19844). The most recent studies in
this direction concern the slightly randomly aperiodic array of ribs (Eatwell 1983; Crighton
19845).

Inhomogeneities in the form of an edge (to a freely suspended or baffled plate) or abrupt
thickness change need the solution of a Wiener—Hopf problem. This was first attempted by
Lamb (1959), though his approximate factorization is valid (at best) only for light fluid loading.
Davies (1974) gave an exact formal factorization and evaluated the relevant functions
numerically to solve the problem of sound generation when a structural wave (subject to fluid
loading) is incident on an edge of a membrane. The diffraction of a plane acoustic wave incident
on the edge of a thin elastic plate was examined by Cannell (1975, 1976) for both light and
heavy fluid loading (in a sense to be defined in §1.3) though for only one configuration and
edge condition in each case. Cannell’s results for heavy fluid loading were then adapted (with
identical notation) by Abrahams (1981) who used them, together with matched asymptotic
expansion methods, to analyse the plane wave diffraction by a large plate (of infinite length
but finite width) set in a rigid baffle. The most striking result of this analysis was the prediction
that the heavily fluid-loaded plate has resonances for particular widths and frequencies; the
present writers know of no previous paper in which that possibility was even implied, though
with hindsight it is perhaps not so surprising when one observes (as Abrahams did) that the
waves incident on an edge are, in the heavy fluid loading limit, merely reflected with a phase
change because of the essentially incompressible fluid motion which the edge reflection process
generates. The waves at appropriate frequencies can therefore suffer multiple reflection and
reverberant build-up until there is infinite amplitude in the steady state.

We have been aware of this argument for some time (since 1975, in fact) and the aim of
the present paper is to exploit its application to a variety of geometries (including the
rectangular and circular plate) and of edge constraints. Our idea of what constitutes ‘heavy’
fluid loading is, however, rather different from that of Cannell and Abrahams, as we shall now
make clear.

1.3. Parameters describing fluid loading

To fix ideas and introduce notation, consider a thin elastic plate, of thickness %, Young
modulus £ and Poisson ratio v, and of density p,,. Let the plate occupy the whole of x; = 0,
with static fluid of density p and sound speed ¢, in x; > 0, a vacuum in x; < 0, and let the
plate be driven by a line force K, e™1*! per unit length of Ox,, acting in the + x,-direction. The
acoustic potential satisfies

(VE+E2) =0, (1.1)
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STRUCTURES UNDER HEAVY FLUID LOADING 299
with the kinematic condition
‘ 0 (%1, 0)/0xy = —iwn(x,), (1.2)
and the dynamic condition
B(04/0xt— k4) m(xy) = — pieo (x,, 0) + Fy 8(x, ). (1.3)

A time factor exp (—iwt), w > 0, is suppressed throughout. Other quantities introduced here
are the bending stiffness, B = EA3/12(1 —v?), the acoustic wavenumber £, = w/¢,, the vacuum
bending wavenumber £, = (mw?/B)i, the specific plate mass m = pph and the plate deflection
7(x,) in the x,-direction, while 8(x,) is the usual Dirac function. This problem contains (aside
from an overall scaling factor proportional to F,), two dimensionless parameters that specify
the degree of fluid—-structure coupling. We make the choice

€ = pcy/mw, and M =ky/k,, (1.4)

where o, is the so-called ‘coincidence frequency’, defined by k,(w,) = ko(wy). M is a phase
Mach number (ratio of wave speed on the plate in a vacuum to the sound speed) proportional
to wk, while € is the ratio of fluid mass within a distance k3! of the plate to the plate mass,
evaluated at the coincidence frequency. Now, € can be writtenas e = (p/p,,) [E/12p,¢5(1— V)3,
involving only the physical properties of the plate and fluid media and independent of both
plate thickness and frequency. It thus provides an intrinsic measure of fluid loading, and will
be called the intrinsic fluid loading parameter. Moreover, in most common applications ¢ is small;
for steel in water ¢ = 0.133, while for aluminium in air € = 0.00213.

Now the value of € does not itself characterize fluid loading at any frequency w; indeed the
question of when fluid loading can be neglected (i.e. the term — piw¢ neglected in (1.3)) does
not have a unique answer, but depends on the magnitude of M and on the physical quantity
under discussion. However, the choice of ¢ and M allows us to get round this difficulty; we
regard € as a small parameter and allow M to take all values. Use of matched expansion
techniques then permits a systematic study of the whole frequency range and automatically
preserves fluid-loading effects where they are needed. This programme was carried out by
Crighton (1980) for the free wave and admittance properties of a fluid-loaded membrane, by
Crighton & Maidanik (1981) for energy transmission across a rib on a fluid-loaded membrane,
and by Crighton (1983) for the Green function (a function of €, M and range x,) of the fluid-
loaded membrane. It emerges from those studies that, as far as the structural response goes,
fluid-loading effects are light when M = O(1), become significant when M = O(¢) and heavy
when M < e. For example, the free surface wavenumber is k¥ = £ {1 + O(¢)} when M = O(1),
differs from £, by an O(1) factor when M = O(e), and differs from £, by a factor that tends
to infinity when M/e—0; and we give the names light, significant and heavy to the degree
of fluid loading in these three cases.

Heavy fluid loading is thus in our minds associated with the double limit

el, N=M/e<1. (1.5)

We envisage heavy fluid loading as achieved by taking a configuration with specified fluid and
plate media (thus fixing € at a small value) and progressively decreasing the frequency until
the condition N < 1 is met.

20 Vol. 312. A
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To see the way in which the parameters enter the model problem (1.1)-(1.3), introduce
x* = k,x and eliminate 75(x,) to get

(V*24+e2N) = 0,
} (1.6)

[(0%/0x}* —1) 0/0xf + 1/ N] $(x7, 0) = — (iwkFy/ Bky) 6 (x7).

For N = 0(1) the only simplification is that the motion over length scales O(£;') is
incompressible. For N < 1 a further simplification results if we define ¥ = N73x* and let
N—0 with x held fixed. Then at leading order the term corresponding to structural inertia
drops out and we are left with a problem with no free parameters, namely

Vg =0, }

1.7
[(0%/0x3) (3/0%;) + 1] $(%,, 0) = — (iwky/ By N*) 6(%y). -

Here the mechanisms retained are those of structural stiffness, fluid inertia and (incompressible)
pressure forces. The present paper is largely concerned with problems involving those three
mechanisms, although on occasion we also consider (still with e—~0, N—0) length scales of
order £, for which the compressibility term in the Helmholtz equation must be retained.

For the most part it has not been necessary previously to go into much detail on what
constitutes heavy fluid loading. Many authors, concerned with the distant acoustic field
radiated from infinite homogeneous structures, have taken the condition for heavy fluid loading
as pcy/mw > 1, which corresponds to M < €t in our notation. This is correct for acoustic far-field
problems, but not for the structural response, where one has to have M = O(e) or less before
there is a significant fluid-loading effect. Inhomogeneous (semi-infinite and finite) structures
have, however, been discussed from the acoustic plane wave diffraction point of view by Cannell
(1975, 1976) and Abrahams (1981) and it must be emphasized that their definition of heavy
fluid loading is different from ours, with the consequence that any overlap that might have
existed with the present work is very slight (and, to be specific, concerns just one entry of table 1
and the consequent prediction of certain resonance frequencies).

Cannell and Abrahams take as small a parameter which in our notation corresponds to ¢ V3.
However, they also stipulate that as ¢ N3—0, the parameter M must remain O(1). This may
lead to a valid mathematical problem, but since it essentially sees heavy fluid loading as
achieved by increasing the value of p at constant values of w, the plate parameters and c,, it
does not correspond to the usual physical situation. There one has given media — steel and water,
say — and is interested in whether fluid loading is light or heavy at a given frequency. When
fluid loading is increased in this way by lowering the frequency it is simply not true that M
can remain O(1). A related difficulty is that the small parameter of Cannell and Abrahams
is dependent on ¢,, and would be zero in the incompressible limit, implying that in that limit
fluid loading is necessarily heavy. That also is not true; the relevant measure of fluid loading
for incompressible fluctuations is provided by the value of N = mk,/p, and although we here
take N < 1 there are cases of physical interest in which that is not appropriate.

We believe our choice of limiting processes to correspond better with the usual situations
of interest and to provide the ‘natural’ way of quantifying fluid-loading effects. Certain results
are, however, the same, whether our ordering is used, or that of Cannell and Abrahams. In
particular, the phase change experienced by a wave on reflection from an edge should be the
same (it is a local process and the relation between larger length scales is irrelevant), and we
find that it is for the cases treated by Cannell and Abrahams. Other quantities need not be


http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a

/A
A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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the same; for example, the acoustic field radiated in the edge reflection process is not locally
determined, and we can see in the analysis that different terms are retained or neglected
according as one takes M = O(1) or M < 1. The differences are not qualitatively large, but
the reader is cautioned none the less as to the possible differences which may arise from different
hypotheses as to what amounts to heavy fluid loading.

1.4. Scope of the present paper

This paper must be related to a previous one (Crighton & Innes 1983). There the infinite
plate, under line and point forcing, was examined in detail with the heavy fluid loading limit
described above. Then one semi-infinite configuration was studied briefly, and with no proofs.
The results for that configuration were then applied to the structural response of a strip plate
of large but finite width, subject to line-force excitation. Resonant response was predicted at
certain frequencies which agree with those found by Abrahams (1981), and other interesting
aspects of the structural response were also delineated. Comparison was also made with the
predictions of so-called ‘edge-mode’ theory, in which fluid loading is ignored in calculating
the surface response which is then used to predict the acoustic field; the comparison showed
edge-mode theory to be qualitatively and quantitatively wrong under heavy fluid loading.

We have several aims in this sequel paper. First, we wish to give a little detail and a great
many results, most of them new, for the semi-infinite plate problem. These solutions, including
for the first time problems of oblique incidence of a structural wave on an edge, are to serve
as building blocks for finite geometries, and it is important that their properties be reasonably
fully set down. Second, we wish to apply an asymptotic method, using the semi-infinite problem
results, to finite geometries of interest, taking the strip with line force drive, the strip with point
force drive, the circular plate with eccentric point drive and, finally, the rectangle with point
drive (although only, in this first attempt, for the membrane model of the structure).

Under heavy fluid loading, the criteria by which these structures are to be regarded as large
are simply (cf. the definition of x* in §1.3)

Kl = kyINE > 1, (1.8)

where [ is a typical dimension. There is no requirement for the plate to be large on the acoustic
scale (which would require £/ = k,le N3 > 1) and the possibilities k,/ < 1 and £,/ > 1 are both
retained in the description of the acoustic field, where this is given. Our primary interest,
however, is in the structural response provoked by localized mechanical forcing. Although our
problems for finite geometry should really be attacked by matched asymptotic expansions, we
do not use that formal language here. The problems are simple enough that it is not necessary
to introduce the paraphernalia of multiple sets of dimensionless coordinates, and indeed most
of the work is carried out directly in the dimensional coordinates.

2. SEMI-INFINITE PLATES AND MEMBRANES: THE WIENER—-HOPF METHOD
APPLIED TO UNBAFFLED AND BAFFLED CONFIGURATIONS

2.1. Notation

Throughout this paper the following conventions will be adopted. Static compressible fluid
of density p and sound speed ¢, will occupy the region x; > 0 above a plane structure lying
in x, = 0 if that structure is infinite (with a vacuum in x, < 0) and the whole space

20-2
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— 0 < xy < o0 if the structure is not (doubly) infinite. (The reason for this is that when an
infinite structure model is relevant, the case of most interest involves significant fluid loading
on one side only; if double-sided fluid loading is of interest the necessary changes are easily
made.) If the structure is an elastic plate it will have bending stiffness B, if a membrane the
tension will be denoted by 7. In either case, m will denote the mass per unit area and mechanical
losses will be neglected. For two-dimensional problems, dependence on the x,-coordinate will
be ignored, the structure will lie along the x,-axis and the fluid motion will take place in the
(%1, %3) plane. For axisymmetric problems one defines r = (24 x2)}; other definitions to be used
ky, = (mw?/B)i, ky, = (mw?/ Tt and k, = w/¢, for the vacuum free wavenumbers at frequency
w on a plate or membrane, respectively, and for the acoustic wavenumber, while a fourth
quantity of the same (wavenumber) dimensions is g = p/m. A time factor e, » > 0, is
suppressed throughout.

We begin by considering in some, though by no means full, detail a pair of prototypical
two-dimensional problems involving semi-infinite unbaffled and baffled structures lying in
equilibrium along x; = 0, x; < 0 and totally immersed in fluid so that the parameter x4 must
be interpreted as 2p/m. The first of the two problems to be examined here has been briefly
discussed by the authors (Crighton & Innes 1983), and it involves a coupled fluid — plate system
which is excited by a subsonic surface wave normally incident from x, = — 00 on the free edge
of an unbaffled plate; in the second problem the structure lies adjacent to a rigid baffle. These
two exemplify all the issues arising in a wide range of similar problems, and the aim is to sketch
the procedures involved for those two and then merely to quote the corresponding results for
six further cases.

2.2. Free edge, unbaffled plate

As is usual and necessary in problems of this type we express the total structural and acoustic
fields as sums of incident and scattered parts, where the incident parts correspond merely to
the bounded solution for the doubly-infinite system consisting of a free wave of wavenumber
k at frequency w. Crighton (1979) has shown that, whatever the values of the physical
parameters involved, the dispersion function

(K — k8) y,,— ok, = 0 (2.1)

always possesses precisely one positive real root; it is that wavenumber, representing an
acoustically slow mode, which is designated henceforth by « and in the heavy fluid loading
limit it attains the value (uk%)3. Furthermore, it is evident that the scattered acoustic field is
odd in ¥, and thus our attention is confined to x, = 0. Then, the definitive equations for the
unbaffled system comprise the Helmholtz equation

(VE+ED =0 (2.2)
for the fluid potential, the equation for the plate deflection
B(04/0xt— k) 5 = —2piwg(x, < 0, %, = 0,), (2.3)

the kinematic condition
0p(x,,0)/0xy = —iwm(x,), x, <O, (2.4)
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and the symmetry condition for the unbaffled configuration
é(x,,0) = — (iwd/y,) exp (ikx,), x, >0, (2.5)

where ¢ and % are the potential and deflection in the scattered wave and dexp (ikx,) is the
plate deflection in the incident wave.
To analyse the problem we introduce the generic Fourier transforms (cf. Noble 1958) defined
by - . 1 [o + o0
Foditbm) =g [ [ fomn) exp ) (2.6)
— 0

At the outset it is necessary to introduce a small positive amount of dissipation into the system
by attributing a small positive imaginary part to the frequency. This device ensures that the
half-range Fourier transforms of the scattered fields exist as analytic functions of £ in some
common strip defined by the intersection of overlapping upper and lower half-planes R, and
that functions suffixed by + possess the usual analyticity properties in the regions R, of the
complex wavenumber plane.

Itis then a simple matter to manipulate the transformed equations and boundary conditions
to obtain a linear functional equation of the Wiener—Hopf type, namely

K(k) [p(k, 0) +wd/y, (k+K)] +[(K* = k8) 0B . (k, 0) /Ox, + i P(k)]
+ (2p0*/B) wd/y (k+k) =0, keR . NR_, (2.7
wherein the kernel, K(k), is that ubiquitous function of coupled fluid—plate problems given by
K(k) = (K —kb) y— kb (2.8)

and y = (K2—k2), (2.9)

with branch cuts defined in the usual manner, that is running from the branch points to infinity

in the upper and lower half-planes without crossing the strip of analyticity. The polynomial
£(k) = [0°9(0)/0x3 + (—ik) 0*p(0) /027 + (—1k)* O (0) /0%, + (—ik)* 5 (0)]

is related to the edge constraints; in it we regard any two of the coefficients as being prescribed
by those constraints and the remaining two as unknown constants (to be determined as part

of the solution). In particular, at a free edge the total force and the bending moment are both
zero, from which it follows that

0% (0)/0x3 = ik3d, and 0%*9(0)/0x? = k2d. (2.10)

Splitting the even function K(k) into a product of factors K (k) K_(k), analytic and non-zero
in R, respectively, and with

K (—k) = K_(k), (2.11)
and K, (k) = O(k), (2.12)

as |k|—> o0 in R,, the standard procedure (Noble 1958, p. 36ff) leads to a pair of algebraic
equations involving an entire polynomial which arises naturally via the application of the
extended form of Liouville’s theorem following the Wiener—Hopf split manipulation. However,
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the familiar anticipated behaviour at the edge, that the pressure be bounded and the fluid
velocity be no more singular than |x|7%, allows us to deduce that in the present problem

E(k) = E,+ E, k, (2.13)

thereby introducing a further two unknown constants. So finally we have the solution to the
Wiener-Hopf equation (2.7) in the form

$_(k,0) = (Ey+ Ey k) /K_(k) — [wd/y(k+K)][1—K_(—K)/K_(K)], (2.14)
and

(k' —k8) 3 , (k, 0) /0y = — (Ey+ Eyk) K, (k) — [w0d/7,(k+K)]
x [2p02/B+K_(—&) K _(k)]—iwP(k). (2.15)

In this unbaffled configuration the four unknown constants are determined in a familiar
manner by ensuring that all subscripted functions are analytic throughout their domains of
analyticity. Specifically, we note that d¢, /Ox; appears to possess poles at £ = +£, and +ik,,.
Therefore we choose the constants so that these poles are in fact illusory and this requires that

K, (A) (Eg+E Q)+ [2p0%/B+K_(—k) K (A)] [wd]y (k+k)]+iwP(A) =0, (2.16)
with A =+, and +ik, in turn. Similarly, an inspection of
7_(k) = —[(2piw/B) ¢_(k,0) + BP(k)]/ (k*— ki) (2.17)
yields two additional equations:

(Ey+E D) wd B -
A L =

for A = —k, and —ik,.

The set of equations, (2.16) and (2.18), is sufficient to determine the four unknown constants
and thus the scattered field, though not in a guise which is particularly illuminating with regard
to the prediction of characteristics of the diffracted and reflected waves. None the less, in the
low frequency—heavy fluid loading limit the explicit expressions of the Appendix ((A 17) and
(A 22)) for the factors K, (k) may be used to obtain transparently simple results in a number
of interesting cases.

Specifically, when the edge at x, = 0 is free and in the heavy fluid loading limit, we obtain

E, ~ wdk} 10tet™/Nb, and  E; ~ —wd 10tei™ Nis/k, (2.19)

(where the definitions u/k, = ¢/ M, ky/k, = M, M = eN have been introduced and in the low
frequency—heavy fluid loading limit N < 1).
For the plate waves reflected and scattered at the edge we have

1 +o0

1) =g A(—k) exp (ikx,) dk, (2.20)

in which 7j(£) is given by a combination of equations (2.14) and (2.17). In the limit of vanishing
dissipation the path of integration becomes the real axis indented above (below) poles and
branch points on its negative (positive) ranges. For x, < 0 we deform this contour to infinity
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in R_. It is a simple matter to verify that the only singularities of 7 are those associated with
the branch point and poles of K, (k) = K(k)/K_(k). Complex poles in R_ necessarily lead to
exponentially decaying coupled modes; and branch line integral contributions decay algebra-
ically, as O(|x,|7%), when x; - 00 on the plate. Thus the only propagating plate wave arises from

the residue contribution at £ = —« and this leads to a reflected wave
_2p0 K (—k) { de_(-—K)] e~ikm
1) =T @Kk T ey, R 221
which, in the limit under consideration, reduces to
(1) = deT i, (2.22)

demonstrating, as anticipated, that, in a first approximation, the incident field merely suffers
a phase change on reflection without change in amplitude.
The distant field may be calculated from the inverse of the transformed Helmholtz equation:

sgnx, [t - .
P(xy, %) = =5 P(k,0) exp (—ik; 2, —ylxg|) dk (2.23)
—a0

with integrand given, in the unbaffled case, by
Bk, 0) = [Ey+ E k+wdK_(—&) )y (k+K)] /K_(k). (2.24)

The path of integration is from — o0 to + oo within the strip of analyticity and this shrinks
to the indebted real axis as before. Again we omit details of the standard contour deformation
onto the steepest descents path (Noble 1958; Clemmow 1966) and we simply quote the familiar
result that the distant radiating acoustic field may be evaluated from

1
D (xy, %5) ~ (2::‘;*)2 exp (iky 74— }im) sin @ §( —k, cos 0, 0) sgn x, (2.25)
where x, = 7,sin 6, r = r, cos . When use is made of the leading-order terms alone for £, and
E,| it becomes obvious that the ‘natural’ leading-order term in gg(-——/c0 cos 8, 0) vanishes, and
therefore it is necessary to retain higher-order terms in the various asymptotic expansions
required in the determination of the four unknown constants. The simplest way of dealing with
the four equations in (2.16) and (2.18) is to rewrite them as indicated in the Appendix
((A 46)—(A 50)). From the alternative set of equations given there it is a straightforward,

though tedious, matter to obtain values for the constants which lead to the following expression
for the diffracted field:

D, (%, %5) ~ [cod exp (ikyry)/ (Mky74)?] sin 0 ge? N'¥ sgn x, (2.26)

where the number q is (1)ie #/sinn. This completes our examination of the semi-infinite

unbaflled plate for normally incident structural waves.

2.3. Free edge, baffled plate

To continue our study of semi-infinite wavebearing surfaces with normal incidence at the
edge, we consider briefly how the foregoing discussion should be amended when the plate is
abutted to a perfectly rigid baffle occupying the half-plane x; = 0, x, > 0. The edge is not
constrained at the junction and is able to move freely next to the baffle.
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The presence of the baffle changes the condition on x, = 0, x; > 0 and (2.5) is replaced by
the kinematic condition

0¢p(x,,0)/0x, = iwd exp (ikx,), x, > 0. (2.27)
Now we proceed as before to a Wiener—-Hopf equation
H(k) [7_(k)—id/(k+ k)] +id(k*— &) / (k+K)
+ P(k)— (2piw/B) ¢, (k,0) =0, keR NR, (2.28)
with the kernel, H(k), now given by

H(k) = K(k)/y. (2.29)
This has a solution
(k) = (Ey+E k) /H_(k) + [id/ (k+x)] [1—H_(—«)/H_(k)], (2.30)
~ _ i _ id _ _id(k4—lc4)
and ¢, (k,0) = 2pia){[(E°+E1k) e H_( K)]H+(k) —Ter—)L+P(k)}. (2.31)

In this case the most convenient way of determining the entire function is by examination
of the asymptotic form of (2.30) as |k| > 0o in R_. By using the results of the Appendix, which
are pertinent in the heavy fluid-loading limit, the functions on the right side of the equation
for 7/ _ (k) may be expanded in inverse powers of £ up to the term in £7%. Thence Watson’s lemma
(Murray 1974) may be invoked in an inverse fashion to find the behaviour of (x,) as x;, >0_.
The upshot of this procedure is that

N(xy) ~ (Ey/ho+id) + (Eo/ hy— Ey hy[hy—ikd) x,

—i[—=Eyhy /byt (Ey/ho) (B —hy) +ixd— (id/hy) H_(—K)] 3%

- [(Eo/ho) (h%_hz) + (E1/h0) (2h1 hy —hy —h})

—ik3d+ (id/hy) H_(— k) (k+h)] 83+ O(x}), as x,>0_, (2.32)
where, for heavy fluid loading, the trigonometric expressions k; (: = 0, 1, 2, 3) are given in the
Appendix (A 44). Equation (2.32) is exact and not specific to any given edge constraint.
However, in the particular case of a free edge, when (2.10) is valid, the unknown constants

can be determined exactly from (2.32) and their values are also given in the Appendix (A 50).
Arguments identical to those previously used show that the reflected elastic plate wave is

of the form
d[H_(—«)]? { 2K(/<2/11+K/z§+h1/12——h3)} »
LX) = — 1+ eI, 2.33
) = Sl H k)] il 259
and this simplifies to 7. (%) ~ dexp [ —i(kx; —5m)], (2.34)

use having been made of the explicit values of the £, in the heavy fluid loading limit.
Equation (2.25) still provides an asymptotic formula for evaluating the distant acoustic field.
However, in this case,

Pk, 0) = (iw/y) [Ey+ Eik—1dH_(—«)/(k+x)]/H_(), (2.35)
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and for heavy fluid loading this leads directly to

By~ (cyd) [exp (ikyry)/ (Whyrs)}] cos (36) gt VY (2.36)
where, here, ¢ = 10%sin (&) efim,

2.4. Discussion

The principal result of the section is that, for a free edge, an incident plate wave dexp (ikx,)
is reflected as Rdexp (—ikx,) together with, of course, an acoustic field which decays
algebraically as |x,| > 00 on the plate. R has the value exp (+mi) or exp (jin) according to
whether the plate is baffled or not. In either case R is equivalent merely to a phase shift and
this implies that, to leading order, when N — 0, no energy is lost in the reflection process. Indeed
this can also be shown to be true in the régime of more modest fluid loading characterized by
N = 0(1), but there the phase shift is a complicated function of frequency which simplifies to
the frequency independent values of +#m and im, respectively, as N—0. As for the scattered
field, we have shown that it varies as N'% cos 10 and N ¥ sin € in the two cases under consideration.
A comparison of the results, for the unbaffled case, with those predicted by the familiar ideas
of ‘edge-mode’ radiation was included in Crighton & Innes (1983); there it was shown that
those ideas greatly overestimate the strength of the scattered field, while in circumstances of
light fluid loading it has been shown (Cannell 1975) that the predictions of ‘edge-mode’ theory
are accurate.

However, the arguments and equations of this section are, for the most part, general and
not special to the free edge condition (nor in fact to the heavy fluid-loading limit though
attention will be restricted to that limit here). Thus it is possible to use these two distinct
methods for unbaffled and baffled plates to predict, in the very heavy fluid-loading limit, the
phase shift on reflection and the level and directivity of the diffracted field for a whole variety
of alternative edge constraints; this we have done and the results are tabulated and discussed
in the following section.

3. TABLE OF RESULTS FOR DIRECTIVITY AND PHASE SHIFT FOR VARIOUS
CONFIGURATIONS UNDER HEAVY FLUID LOADING

We have used the equations of the preceding section to evaluate the reflection coefficient
and the acoustic field for eight different semi-infinite configurations. Six of these involve a plate
baffled by an adjacent semi-infinite rigid plate, or unbaffled, and with three different edge
conditions. The two remaining cases involve an unbaffled membrane with either a free or fixed
edge; these are included for future reference when further extensions to finite strips and panels
involving other types of forcing are considered.

The results for the phase shift @, defined by R = exp (i®@), and for the far field dependence
on N, eand 6 are recorded in table 1. This reveals a wide, though not simply predicted, variation
in the reflection coeflicient. The strongest radiated acoustic fields are those associated with
baffled geometries and typically these are stronger by a factor O(N~%) in amplitude than those
arising in the unbaffled configurations. The weaker fields scattered by an unbaffled edge have
two different variations with N, the weakest of these fields being that associated with the free
edge. We also note that the application of the Wiener—Hopf technique, which is necessary to
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TABLE 1. THE PHASE sHIFT @ (DEFINED BY R = exp (i@)) AND THE VARIATION OF THE AMPLITUDE
OF THE SCATTERED ACOUSTIC FIELD WITH /N, € AND 0, FOR SIX DIFFERENT SEMI-INFINITE PLATE
AND TWO SEMI-INFINITE MEMBRANE CONFIGURATIONS

(The function ¥ and the number ¢ are defined so that, in all cases, Dy = (1/mk,r4)t %07 (¢od) gF (e, N, 0).)

phase acoustic field
edge condition shift, @ F(e, N, 0) q
unbaffled plates freely suspended, in e2N¥sin 0 (Mt e ¥ /sin (L)
free edge
clamped edge — 3T e2N¥sin 6 (%)} tan () e Bt
simple support in €2 N¥ sin 6 (10)} sin (Ir) e=doni
baffled plates free edge 2T ENEcosd (10)? sin L) efind
clamped edge 3n eiNEcosio (10)2 g5
pin jointed B N2 cos 16 (10)% cos () efomt
unbaffied membranes  free edge —in €2N¥sin6 e
fixed edge —Un € N8sin 0 3 g—dam

implement the ideas of edge-mode theory, in the unbaffled cases leads to a multipole sin 10
directivity in contrast to the dipole directivity sin 6 of our exact solution; likewise, edge-mode
theory for baffled plates, which requires no Wiener—Hopf analysis, predicts dipole
directivity whereas our solution now varies as cos 3.

4. THE ENERGY BALANCE IN THE COUPLED FLUID—PLATE SYSTEM
4.1. Energy fluxes in the plate

It is of some interest to consider the balance of power in the coupled fluid—plate system both
as a partial check on the previous calculations and to see how the incident wavepower is
distributed among the available modes. An energy equation for the system is readily obtained
from the time-dependent linear structural and acoustic equations in a familiar way. Such an
equation was derived for the membrane by Crighton (1984¢) and the corresponding results
for the plate are easy to derive. They lead to

0 _ _
2([ p3Pas) = <rin) ~Fls), (2.1)
g On
with the time average { ) calculated from

WACTHNACTONES 1 XS VACHN )

and where * denotes complex conjugation. Here, S is a surface in the fluid joining the points
x,, %, on the plate, n is the unit outward normal, and F(x,) is the mechanical flux across station
%, in the plate, given by

Py oy 0 0277]
_ g|®non 0% _ 4.2
Fla) =8 [axf; 3t ox? Ox, 0t (+2)

We now consider how the power balance expressed by (4.1) is achieved in one of the typical
cases previously discussed in §2. To calculate the mechanical flux (F(x,)) in the plate itself
we note that the total structural field comprises propagating incident and reflected waves,
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non-propagating waves associated with complex polesin R, of K_(k), and an acoustic field allied
to the branch line integral. These last two contributions to the field both decay as |x,| -+ o0
on the plate, the first necessarily exponentially and the second as O(|x,])#; thus they transport
no energy to infinity along the plate. Consequently the mechanical energy flux is all carried
by the subsonic surface waves. Now at great distances from the edge we may write

ES d(eiK11+Re~iKzl) e—iwt’ (43)

in which R is the complex number depending crucially on the actual configuration under
consideration, but which always reduces, in the very heavy fluid-loading limit N0, to
R = €®(1+ O(M?3)). (Here O is the phase shift of table 1.) It follows (cf. Innes 1983, p. 87) that
the net mechanical energy flux in the positive x,-direction, across a distant section x, of the
plate, can be determined in terms of the total structural field (4.3) by

(F(x,)> = Bwd®*(1—|R]?), (4.4)

and, of this total, a quantity Bwd?«? is carried by the incident wave. To calculate the rate of
working of the pressure across S, {[sp(0¢/0n) dS), we recall that the far field in the fluid has
two distinct components that are capable of carrying energy: first, a wavefield thrown up when
the subsonic wavepole £ = « is captured during the deformation of the integration path on to
a steepest descents path and second, a cylindrical acoustic wave of general form
rytexp (iky7,) @(0) which arises from the steepest descents integral alone. It is easily shown that,
when the surface S is sufficiently large, the total rate of working of the pressures across S is
simply the sum of the individual rates associated with the two pressure fields separately. Now
the field induced in the fluid by the motion of the plate is given by

¢ = (iwd/y,) [e*® + Re kn] e T e ot x> (), (4.5)
and we see that although this field decays exponentially with normal distance from the plate
%3, 1t does indeed carry energy to infinity in planes parallel to the plate. Thus the most

appropriate choice of S for this field is a large prism of square cross section with sides parallel
to the x, and x, axes. Thence, for the subsonic nearfield pressure wave, we have

<Lp %%Sds> - 2<f00 Pi‘”¢§£ dxs> = (p’d®/2y7) (1= |RI*), (4.6)

0

of which the amount pw®d?k/2y? is carried by the incoming wave. The total average input
energy flux is therefore the sum of the first terms in (4.4) and (4.6), namely

<F(x1)>input = de2K3+pw3d2K/2')’g

= (mo®d?k®/ky) {1 +34[ (k/ky)* = 11°/ (c/ ky)* (€/ M)?}.
Now for M = O(1),e € 1

CF(%) Dinput ~ (mw®d®/ky) {1+ (4 —3M?) /4M (1 — M*)3, (4.7)
but in the very heavy fluid-loading limit, M = eN, ¢ € 1,
CF(%) D input ~ (mod?/ky NB) (141). (4.8)

Thus, while in the light fluid-loading limit an asymptotically negligible fraction of the incident
energy resides in the fluid, we see that in the heavy fluid-loading limit the situation differs
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significantly: of the incident energy # resides in the plate and } in the induced subsonic pressure
wave, which is analogous to the result previously obtained (Crighton 1984 ¢) for the membrane.

Finally we come to the radiating acoustic field scattered by the edge at x;, = 0. To evaluate
the associated flux we choose S to be a large cylinder, of obvious orientation, so that for the
cylindrical wave

<Lﬁ%ds> = pokowj:@(ﬁ)VdG (4.9)

for double-sided fluid loading. For the two specific cases considered in some detail in §2 we
find that the acoustic energy fluxes per unit length parallel to the edge carried by the cylindrical

wave, are
mw3d?*N ¥ [k, 20sin*{sm  and  (mw’d2eN3/k;) 3 sin?&n (4.10)

for the unbaffled and baftled cases respectively. Thus, even in the very heavy fluid-loading limit,
the acoustic energy flux in the cylindrical wave is a negligible fraction of the incident
wavepower. Furthermore, in this heavy fluid-loading limit it has been shown that, for all the
configurations tabulated in §3, |R| = 1 to leading order. This is simply a manifestation of the
fact that in this limit the fluid is virtually incompressible (as inferred from the replacement of
v by || to leading order, for example). Hence it follows from (4.4) that, to leading order in
the assumed limit, the total reflected wavepower, carried in the surface itself and in the adjacent
fluid layer of thickness 2y !, precisely balances the incoming energy flux.

It is, of course, possible to calculate subsequent terms in the expression for the reflection
coefficient, R, and this we have done. But what is needed in any further consideration of the
edge-scattering process is, typically, several terms of uniformly valid asymptotic expressions for
the Wiener-Hopf kernel factor K, (k) when £ = O(1), O(N7#) and as |k| > o0 ; moreover, until
a stage is reached when it is necessary to retain the term in the kernel which is identified with
Sluid compressibility the corrections to the reflection coefficient obtained contribute adjustments to the
phase shift alone. Although the generation of the required asymptotic series is a straightforward
matter, an inspection of the (re-scaled) kernel function in the form

K(t) = (1*—=M3/o%) (2—M¥%/o?):i—1 (see (A 4) with z = to/M3),

makes it obvious why many terms of the series are required before the effects of fluid
compressibility come into the reckoning; thus the whole business of determining the unknown
constants from, say (2.16) and (2.18) becomes extremely arduous and time-consuming.
However, the roles played by the individual mechanisms involved in the reflection and
scattering processes at the edge, particularly that of fluid compressibility may be exposed in
a far more convincing manner. The original thin plate—fluid system will be discarded and will
be replaced by one in which the structural component is redefined in ‘lumped circuit’ terms
chosen, crucially, to highlight those physical attributes which have been revealed as dominant
in the coupled plate—fluid complex and the low frequency limit.

4.2. Complete power balance for a locally reacting surface

Accordingly, a simpler semi-infinite model is considered. The thin elastic plate is replaced
by a simple damped mass—spring system for which the local surface impedance Z is given in

terms of its resistive and reactive components, R and X respectively, by

Z=—R—iX, (4.11)
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wherein both R and X are positive constants. This type of approach has proved useful before in
modelling simple coupled systems where the adoption of a more complicated non-local
dynamical equation for the surface response fails to admit sufficient tractibility (see, for
example, Crighton & Leppington 1970). Now, in the low frequency-very heavy fluid-loading
limit which is of interest here, it is known that the surface response is dominated by the stiffness
and that the damping term is of secondary importance. Hence in (4.11) we take

R=0 and X= (1/w) (K—Mw?), (4.12)
where for spring-dominated effects it is assumed that
K—Mw? > 0. (4.13)
In this limit the response of the plate is governed by the purely local relation
pressure difference = impedance X velocity.

The structure lies in equilibrium along (x, = 0, ¥, < 0), and as in the previous models we are
concerned with the determination of the motion — one-dimensional on the surface, two-
dimensional in the fluid — generated when a subsonic surface wave is normally incident from
%, = — o0 on the edge at x; = 0. The total surface deflection in the x,-direction is expressed
as a sum of incident and scattered parts, that is, #, +#, where the incident is the bounded
solution of the pertinent doubly-infinite coupled problem and 7 is the scattered wave. For the
particular lumped parameter representation envisaged here

7, = dexp (iax,), (4.14)
with the free wavenumber o= (kB2+p?)i a>0, (4.15)
where 7 =2p0w%/(K—Mw?) ~ 2p0®/K by (4.13). (4.16)

Likewise we write the total potential, an odd function of x,, as ¢, + ¢, where

$y = (iwd/y,) exp (iax, = ,|x,|) sgn %, (4.17)

with y, = (a®—k2)} > 0, ¢, the potential induced by the incident wave 7, and ¢ the scattered
field in the fluid. This problem requires the determination of a scattered potential and
deflection, each satisfying appropriate conditions at infinity and on the plate. Introduction
of half-range Fourier transforms leads to an unexceptional Wiener-Hopf equation, with kernel

M(k) = (k*—kg)2— s (4.18)

expressions for the reflected structural wave and distant radiated field are readily obtained from
the Wiener-Hopf equation.
Specifically, it emerges that as ¥, -— 00 on the structure the sole propagating reflected wave

assumes the form
7.(%,) = Rdexp (—iax,), (4.19)

in which the reflection coefficient, R, is given by
R = (i/2a%) M3 (a). (4.20)

In problems of this type, the factorization (in a Wiener—Hopf sense) of the dispersion function
is paramount. Even in the simplest coupled configurations this is a matter of some technical
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difficulty. The calculation of the edge-scattering efficiency, for example, requires explicit
expressions for |M_ (a)| and |M_(—k,cos6)|, and the two wavenumbers involved are often
disparate. However, an exact expression for |R| valid for arbitrary values of &, and # may be
obtained in the current problem from the Cauchy integrals that define the Wiener-Hopf
factors; this is, of course, unusual, and not paralleled by the expression for the phase shift, which
is extremely complicated. Details are relegated to Appendix 3 to which the reader is referred.
Here we quote only the two crucial results, namely

|M, ()] = (22)%, (4.21)
|M_(—kycos0)| = (a+k,cos O):. (4.22)

Substitution of the first result in (4.20) leads to

IRl = (1+K/) (4.23)
from which it follows that IRl =1, k,=0,
while IRl <1, ky,>0.

By analogy with (4.6) we see that the energy of the subsonic pressure wave is diminished by
an amount A
pwid?k3/ 2p® (W* + k) (4.24)
on reflection.
The distant radiated acoustic field, associated with the steepest descents integral, is given by
the cylindrical wave A
Ba ~ rdexp (ikyry) B(0), (4.25)
with angular dependence
koM e sinfwd M, (o) sgnx
D) =2 * o 4.2
©) (21t) Vot —kycos ) M_(—k,cos ) (4.26)

Substitution of the relevant expressions for M, (o) and M_(—k,cos6) in (4.21), (4.22) allows
the power radiated to infinity by the cylindrical wave to be evaluated from (4.9) in terms of
elementary functions. Indeed, for double-sided fluid loading the power radiated to infinity by

the bulk wave is pwPd?k2 ) 2 (1% + K21,

This vanishes when £, = 0 and precisely equals the energy lost in the reflection process for
arbitrary values of k, and .

The scattering efficiency of the edge — the ratio of scattered acoustic power to incident
wavepower — follows readily and is given by

e = K3/ (LKD), (4.27)

which is small when £, 0. However, the small, non-zero value of &, is essential in providing
the sole mechanism for transporting a small amount of energy to the body of the fluid; this
amount of energy exactly balances the structural energy lost in the reflection process when the
surface is passive and no other loss mechanisms are allowed for. We have not been able to
prove this self-evident truth in the case of the thin elastic plate possessing flexural rigidity and
inertia, but we believe that the simpler model with a constant stiffness term provides a totally
convincing demonstration of the energy balance in the reflection process.
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5. AN APPROXIMATE METHOD FOR VERY HEAVY FLUID LOADING: THE FINITE
CIRCULAR PLATE WITH ECCENTRIC DRIVE

5.1. General asymptotic method for very heavy fluid loading

The first entry of table 1 for the semi-infinite reflection of a structural wave was used in
Crighton & Innes (1983) to determine the response of a finite unbaffled strip plate with free
edges driven by a line force K, exp (—iwt). Analogous methods may be used to analyse other
simple finite geometries subject to alternative types of forcing, for example, localized point drive.
This can be done easily when the lengths, /, of the plates in question are large compared with
the fluid loading wavelength = (that condition leading to £, /N3 > 1; a limit readily satisfied
in the very heavy fluid-loading limit assumed herein). It is then a straightforward matter to
show that the simplicity of the results of Crighton & Innes (1983) for mode shapes and natural
frequencies is general and not a particular outcome of the specific problem discussed.

Quite generally the expression for the plate response must contain a term (the Green
function) corresponding to the infinite plate response, and this term can be suitably chosen to
incorporate completely the singularity associated with a given forcing. The response must also
include terms to represent the free waves demanded by the presence of the edges. At distances
from any given edge that are small compared with / but still large compared with ™1, the
response must be expressible as a sum of terms representing waves incident on, and reflected
from, that edge. Now the reflection process is a purely local one and so it is permissible to relate
the incident and reflected waves by using the semi-infinite configuration results of table 1. Any
particular combination of edge and boundary conditions may be accommodated simply by
choosing the value of @ (the phase change on reflection) accordingly. Thus the strip plate dealt
with by Crighton & Innes (1983) may be generalized to arbitrary edge and boundary
conditions, as we now show.

Specifically we reconsider the plate lying in ¥, = 0, |x,] </, —0o0 < x, < 00, driven by the
line force F,exp (—iwt) along the x,-axis. The plate velocity, an even function of x,, assumes’
the form (argued to hold everywhere on the plate except within a distance O(x ™) of each edge)

iwF, Jw y exp (iklx,|) dk

Viz,) = —
(er) 2nB ) _ o (K —ky) v —pk;

+ 4 cos (kx,) + B cosh (kx,), (5.1)

in which the individual terms assume the roles already cast. For a discussion of the first (Green
function) term, see for example, Crighton (1983), Crighton & Innes (1983). By the
straightforward arguments given there, the behaviour near the edge x = [ emerges as

V(x,) ~ (0F/5Bk®+14) el e7ik(-lz1b 4 14 e~ixt gix=lz1])
+1B(el e (lmb 4 el ex=lzal)y | k> 1,
from which follows B =0 (sincekl/> 1),
and A=A K (5.2)
= (wF,/5Bk®) [—1+icot 30 +«l)],

on application of the reflection rule represented by R = exp (i@) and O is the phase change
relevant to the particular configuration under consideration. This determines the field
everywhere except within a region of extent x~! around each edge where the ‘acoustic’ (or
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314 D. G. CRIGHTON AND D. INNES

more strictly, ‘hydrodynamic’) terms must be retained. In this region the structural field is
determined by the full solution to the semi-infinite Wiener-Hopf problem as given in §2 and
it comprises incident and reflected plane waves together with a ‘hydrodynamic’ field
(associated with the near incompressibility of the flow) of amplitude comparable with those
of the plane waves. We note that, in obtaining such simple results as follow, the heavy
fluid-loading effects were retained (i) in the behaviour near the drive point, where the integral
contributes the infinite plate line drive admittance, (ii) in the free wavenumber « of the free
waves described by the complementary functions in (5.1), and (iii) in the determination of .o}
from the semi-infinite analysis.

As to the status of expressions derived in this way, we show in a later paper (Crighton &
Innes 1984) that (5.1) with 4 and B given by (5.2), is not merely a convenient approximation
of some engineering utility, but that it is in fact an asymptotic solution to the full problem in a
precisely defined sense. One is thus encouraged to apply the method to large, but finite,
geometries where there has been, up to the present, no possibility of any rational approach.

Returning to the general strip plate problem, the line drive admittance may be written

Ay=AP+ A} (5.3)
where o/ is the now familiar infinite plate result (Crighton 1972). We then find that
o, = (iw/5Bk3) [tan &+ cot (30 +«l)]. (5.4)

This expression displays the same features as were noted by Crighton & Innes (1983) in one
particular case: notably that Re .o/, = 0, which implies negligible acoustic radiation loss in the
edge reflection process (and no other loss mechanisms are allowed for); and that the reactive
component of the admittance can assume all possible signs and magnitudes corresponding to
appropriate values of /4 3@. In particular it follows that when

kl=(n—0/2n)n (integer n), (5.5)

we can let F,—0, &/} — oo so that &/} F, remains an arbitrary finite constant. This leads to free
modes of oscillation of the finite strip plate under heavy fluid loading with mode shapes (away from
the edge) given by

coskx, = cos[(n—O/2n) mx, /! ]. (5.6)

The eigenvalue equation (5.5) gives rise to natural frequencies of the form

w, = (n—0/21)2 12Nt (B/mi*)i, (5.7)

n

the last two expressions being very close in form to the corresponding ones for vacuum
dynamics.

The line force excitation originally introduced here provokes only a symmetric response (in
x,), with cosine free modes. A central moment excitation would provoke a purely antisymmetric
response, with sine mode shapes whose characteristics can readily be found as above. In general
the response will be neither even nor odd, and general initial conditions will cause both odd
and even modes to be excited.

As to the sound generated in the far field by the forced motion of the finite plate, much here
depends on the edge and baffle conditions. For the free unbaffled plate it was shown by Crighton
& Innes (1983) that the acoustic field generated by scattering at the edges is a purely numerical
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constant (independent of €, but dependent, of course, on ) times N3 times the field radiated
by the line force acting on an infinite plate, and therefore the latter field dominates; this makes
the acoustic calculations very simple. That remains true for the other two unbaffled edge cases
for which details are set out in table 1. For baffled edges the corresponding factor appears to be
N3, indicating that in such cases it is the edge-scattering mechanism that provides the dominant
far-field signal rather than the primary excitation itself. It is straightforward to calculate the
far field scattered by the two edges from the solution of the semi-infinite problems; all one has
to do is multiply the field for one edge by cos (£,/cos &) which is not necessarily close to unity
in the limit envisaged.

5.2. Circular plate with eccentric drive

Of considerable interest is the extension to circular and rectangular plates of the calculations
for mode shapes and resonance frequencies, and, more generally, of the response of such plates
to arbitrary forcing. For circular plates the extension is straightforward. Suppose the plate
occupies r < a, with point drive at (ry,0) in cylindrical polar coordinates (r,¢). Then the
infinite plate response is

) = _in,f*"o vH® (klr —r|) kdk (5.8)

« anB)_,, (K*—ky) Y —pky
(replacing the Green function of (5.1) for line excitation), and for k|r —»,| > 1 the dominant

term comes from the plot at £ = k where, as usual, k = k, N7 is the free wavenumber in the
heavy fluid-loading limit. Thus

ok,
o ~ oy HO (k7)) (5.9)
F @ J_(kr) HD (kr,), <7,
- 13)302 3 emcosm¢ m( ) m( o) 0
K" m=o HY (kr) I, (kro), 7> 714,

by a well known expansion theorem, €,, being the Neumann symbol (¢, = 1,¢,, =2, m > 1).
Assuming that the drive point is not located very close to the edge, we can write the infinite
plate velocity near the edge as the sum over azimuthal mode number m of (wFje,, cos mg) / 10Bk*?
times (2/mka)tJ,, (kr,) exp [ —imi—imni+ika] exp [ik(r—a)].

Now the effects of the edges must be expressible as sums of regular plane waves of
wavenumber «, or equivalently, in the present geometry, sums of terms like cos me {J,, (kr),
Y, (kr), I, (kr), K, (kr)}, with standard Bessel function notation. Of these only the first is
allowed, for the Y, K, terms have singularities at r = 0 (and the Green function completely
accounts for those singularities) while the 7, terms become large as r— oo (like the hyperbolic
cosine terms excluded from the strip plate for the same reason). Therefore add to (5.9)

o]
v, = ZO A, €,, cosmp J, (kr), (5.10)
m—

to represent the effect of the edges, and expand up the J,, function near r = 4, so that there
the total field (with sum over €, cos m¢ suppressed) is

(wFy/10Bk?) (2/mka)t J,, (kr,) exp [ —imi—immi+ika] exp [ik(r—a)]
+4,,4(2/nka): {exp [ik(r—a) +ika—ymni—ini] + exp [ —ik (r—a) —ika+Immi+1ni]}.  (5.11)

21 Vol. 312. A
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Then we argue that each azimuthal mode is reflected from the edge of a large plate as in the
corresponding semi-infinite problem for purely normal incidence, so that the coefficient of
exp [—ik(r—a)] in (5.11) must be just exp (i@) times that of exp [ik(r—a)]. If Fj # 0 the
resulting equation determines A4,, in terms of F), while if Fj = 0 the resulting equation is the
eigenvalue equation determining the natural frequencies of an mth azimuthal mode, which then
has mode shape cosme J,, (k).

The expression for 4, is

A4, = (wF/10Bk?) J,, (kry) [—1+icot (A, +36], (5.12)
where A, = ka—(m+3})Im, (5.13)
and gives the result "
w .
oA = Moo +W mzjo Gmen(Kro) [— 1+1cot (Am +%@)],

for the drive admittance, ., being the infinite plate contribution. But for any z

2 e Jn(z) =1,
m=0
and hence
1 . o
JZ! = [g(—l—;m—)%] §1N§[—tanﬁn+m§0 Gmen(KfO) cot (Am +%@>] (514)

It is again satisfying that Re ./ = 0, and we have a simple result for the drive admittance
which obviously displays all the features previously referred to and contains, in addition,
dependence on excitation position 7, and mode index 7. In the simplest case, r, = 0, the whole
vibration pattern is axisymmetric and (5.14) reduces to

o = [g(—;T)é]giN§[—tan%6n+cot (ka—in+10)], (5.15)
which is similar to (5.4) and exhibits the same features. As these features have not been itemized
in the present paper, we note them here; if,
(1) [—tangm+cot (ka—in+30)] > 0, Im &/ > 0, corresponding to mass loading, whereas if

(ii) [—tanm+cot (ka—m+30)] < 0, Im o/ < 0, corresponding to stiffness loading, while if

(iii) [—tan&m+cot (ka—in+360)] = 0, Im &/ = 0 and there is anti-resonance (zero velocity)
at the drive point, whereas when

(iv) sin (ka—jin+30) = 0, Im o/ = oo and there is resonant response, while finally if

(v) cos (ka—in+1@) = 0, there is what may be called ‘transparency’ in that the drive point
behaviour, as measured by Im .2/, is unaffected by the presence of the edges of the plate.

Itis easy to see from (5.12) that the eigenvalue equation for free oscillations with no forcing is

A, +30 =nn
and then from (5.10) that the corresponding mode shapes are
cosmep J , (k).

This is as far as it is worthwhile to take discussion of the circular plate. Another case of
considerable practical interest involves the rectangular plate. Here, although in principle the
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same ideas work, the situation is considerably more complicated. On each edge is incident not
a single plane wave at normal incidence, but a continuum of plane waves at all angles permitted
by the geometry of the plate and the point of excitation. What is required then is a knowledge
of the reflection coefficient for semi-infinite geometry as a function of the angle of incidence
of an obliquely incident wave. Both this problem and its application to finite rectangular plates,
are of some complexity and it is unlikely at present that, even in the case of the vanishing of
the Poisson ratio for the material of the plate, simple analytical expressions for the reflection
coefficient will be forthcoming. However, a satisfactory treatment of the analogous problem
involving the reflection of waves obliquely incident on the edge of a semi-infinite membrane
is possible; this is the subject of the next section, which opens the way to the solution of many
problems, of great practical importance, involving finite panels with fixed or free edges and
subject to localized forcing.

6. THE REFLECTION OF AN OBLIQUELY INCIDENT PLANE WAVE AT THE EDGE OF
A SEMI-INFINITE WAVEBEARING SURFACE

This section contains the generalization of the unbaffled semi-infinite configuration of §2 to
the case in which the incoming structural wave is not normally incident on the edge at x, = 0,
but strikes it at an oblique angle, it —6,, say. We discuss only the reflection of a single subsonic
surface wave at the edge of an elastic membrane. We believe that this is a reasonable modelling
procedure which can be expected to predict, albeit qualitatively, the dominant physical
mechanism in similar problems concerned with surfaces whose motion is governed by equations
of greater mathematical complexity.

A formal analysis is presented for the configuration in which the membrane is unbaffled;
specific results of simple, though not simplistic, form are then readily obtained in the low
frequency-heavy fluid loading limit and when the edge is either fixed or free.

6.1. General analysis for reflection of structural waves at oblique incidence on an edge

We consider, then, a homogeneous elastic membrane of surface mass m per unit area under
uniform tension 7. The membrane occupies the region x; < 0 of the (x,, x,) plane and is totally
immersed in static, inviscid fluid. Appropriate incident fields, chosen to represent a subsonic
surface wave travelling over the membrane towards the edge x, = 0 and the attendant fluid
potential, are given by

7; = dexp [ik cos Oy x, + ik sin Oy x, —iwt], (6.1)

@; = (iwd/y,) exp [ik cos Oy x, + ik sin O, x, —iwt] exp [ —y,|%,]] sgn x,, (6.2)

wherein « is the free wavenumber at radian frequency o in the doubly-infinite coupled system.
The angle of incidence, 6,, is measured between the normal to the edge in the surface and the
direction of travel at incidence and thus 6, = 0 corresponds to normal incidence at the edge.
For a single fixed x,-wavenumber component, «sinf,, we assume that the fofa/ membrane
deflection may be written as #; +#(x,) exp [ik sin 8, x, —iwt] and we associate with this a fotal
fluid potential ¢;+ @ (x,, x,) exp [iksin @ x, —iwt]. The transverse vibratory field on the
membrane is governed by the equation

T(VE+kp,) n(x,) exp [iksin 6y%,] = 2p(x),0,), x, <0, x,=0, (6.3)

21-2
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where V2 is the surface Laplacian and where the fluid overpressure p is related to the scattered
potential via p = piw¢. In addition, the interaction at the fluid interface is expressible as

—iwn(x,) = 0p(x;) /0%y, x, <0, x,=0, (6.4)

while the symmetry condition for the unbaffled configuration is equivalent to
(%) = — (iwd/y,) exp [ikx, cosb,], %, >0, x,=0. (6.5)
Finally, the scattered potential in the fluid medium is required to satisfy the Helmholtz equation
(VE+E2) ¢ (xy, x5) exp [iksin Oy x,] = 0, (6.6)

together with a radiation or extinction condition as |x,| -+ 00 in the fluid.

The problem posed above is solved by straightforward application of Jones’s technique
(Noble 1958, p. 52ff) ; yet again we refrain from any discussion of the niceties of the procedure,
but simply state that the equations lead to a standard form of Wiener-Hopf functional equation,

K(k, sin6,) [¢ (k,0) +wd/y, (k+cosb,)]
+{[k2— (k2 — k2sin? 6,)] (06 . /0x,) (, 0) +iwP(k)}
+ (2p?/T) [wd]y (k+KkcosO,)] =0, keR,.NR_, (6.7)

with P(k) = [ikn(0) —0#(0)/0x,]. Which of the two constants included in P(k) is known, depends
on the prescribed edge constraints: for example, if the edge is fixed at x; = 0 it follows that the
total displacement there is zero, which implies that

7(0) = —d, (6.8)

with 97 (0)/0x, to be determined; whereas for a free edge it is required that the net force there

is zero, which implies that
o9(0)/0x, = —idk cos 0, (6.9)

with #(0) an unknown constant to be found in the course of the work. The kernel,
K(k,sin0,) = [k2— (K%, —«2sin2 6,) ][k — (k3 —«2sin 6,) |t — 2pw?/ T, (6.10)

is the generalization to oblique incidence of the familiar membrane-fluid dispersion function,
[(k*—k2,) (k®—k2)t—2pw?/ T']. Furthermore, we recall that the usual conditions limiting the
growth of ¢ obtain as |x,| - 00 in the fluid, and the branch cuts associated with the square root
function, [k*— (k2 —«?sin26,)]: are located in accordance with this requirement.

Now we proceed formally by writing

K(k, sin6,) = K, (k) K_(k),

where the factors K, are analytic and non-zero in R, respectively, with K, (k) = O(|kR) as
k|00 in the appropriate half-planes and where, additionally, (2.11) is satisfied
(K,(—k) = K_(k)). The required splitting is then trivial and results in a pair of algebraic

equations, namely

i _E(K) wd _ K, (kcosb,)
¢—<’%0>-1<<k>‘yx<k+xcosao>[1 K_(k) ]

(6.11)
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and

0B . (k, 0) /0x, = {— E(k) K, (k) —iwP(k)
—[wd/y (k+k cosOy)] [K,(kcosby) K, (k)+2uk2 |}/ [k*— (K2, —«%sin?6,)]. (6.12)

The split equations contain an unknown entire function, E(k), which is introduced via the
invocation of the extended form of Liouville’s theorem. In the present problem we assume that
the standard conditions hold at the edge, namely that the fluid pressure is bounded and that the
velocity has, at worst, an inverse square root singularity. Then it is evident that E(k) is a
constant, E,, say, and subsequent removal of apparent poles in the domains of analyticity of
0 , (k,0)/0x, and 77_ (k) leads to a pair of equations which suffice to determine uniquely both
unknown constants. In this unbaffled geometry the two equations obtained thereby can both
be written in the form

E,K, (k) + [0d/y,(k+ K cos 0,)] [2uk2, + K, (k cos 6,) K, (k)] = —iw P(K),  (6.13)

in which &=+ (k3 —«2%sin?6,)} in turn, and K, (—k) is understood to mean
K(k, sin8,)/K_(—k). This, then, completes the formal determination of the field. However, we
are concerned here with one particular aspect of the scattered field, namely that of the form
of the reflected wave on the membrane. The structural field can be written down simply as
an inverse Fourier transform of known integrand

_ ) _ 2piw wd K (kcosb,)] 1
7-(0 ={- Pt -2 [E0+yk(k+msao)]l<_(k)

2piw wd

+ T v(k+«kcosb,)

}/[kz—(kfn—xzsinzao)]. (6.14)

Because of (6.13), 7_(k) has no pole at k= — (k% —«2sinf,)}; nor is the pole at
k = + (k2, —«?sin?6,)} genuine. Therefore we deform the contour of integration into the upper
half-plane where the contribution from the semi-circle at infinity is zero. The procedure is
standard and we simply quote the result that the only singularity which gives a reflected
propagating wave in the surface as x, >— 00 is that located at £ = « cos 8, and the associated
residue contribution leads to a reflected field on the membrane,

2uk?
77r(x1) = //' m[E0+

(0]

a)a’K+(Kcosﬁo)] K, (kcosb,) exp [ —ik cosf,x,] (6.15)

Ye26costy | (k*—kp,) [dK(k, sin6,)/dk]y_ycoss,

It is not worthwhile to pursue the general analysis further; instead we return to the heavy
fluid-loading limit and consider the solution of the posed problem subject to the two specific
edge constraints mentioned earlier.

6.2. Specific results and discussion

First, we suppose that the edge at x; = 0 is free: if we assume that the condition for heavy
fluid loading is achieved, then M = eN with N € 1 and the free wavenumber « attains the
value k_,/ N3. Therefore it follows from (6.9) that

on(0)/0x, ~ —idk,, cos 6,/ N. (6.16)
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In this limit the equations (6.13) for £, and #%(0) have a simple solution that can be
incorporated into (6.15) to give
9 1
) =~ Kilhm oo V)
[k?n e — N e %% K2 (ik, sin 0,/ N3)
k3, — NK2 (ik,, sin 0,/ N3)

]exp [—ikcosOyx,]. (6.17)

In the heavy fluid-loading limit it is anticipated that the incident wave will be reflected without
change in magnitude, to leading order at any rate; straightforward substitution of the results
of the Appendix and a little manipulation reveal that this is indeed the case. Specifically, for
a free edge in the low frequency-heavy fluid loading limit, it emerges that

(%) ~ dexp (—ikcos b, x,) exp (10,), (6.18)
where it is convenient to define the real angle @, via the auxiliary function

[1—exp (4sin 6, 1(0))] sin 20,
[14+exp (4sinf,1(0))] cos 20, +2u exp (2sin b, 1(0))

@ﬂ=—2cosﬁol(l)+arctan{ }, (6.19)
with g = 1 and I(A) as defined in the Appendix (A 78). We recall that for normal incidence

0, = 0, and then the angle of phase shift is given by

1 Jw arctan us du

=] “uuin (6.20)

T
Evaluation of this integral shows that the corresponding reflection coefficient R is 73", in
agreement with the value obtained by independent means in the fashion of §2, for the heavy
fluid-loading problem that involves a membrane with a free edge.
The second case, in which the edge is fixed, does not differ radically from the previous one;
details are given by Innes (1983). We find that, for heavy fluid loading

7. (%) ~dexp[—ikcosOyx,]exp (IO_,), O, #0, (6.21)

wherein the angle, @ _, is the auxiliary function of (6.19), but now with 4 = —1. For normal
incidence, 6, = 0, we find that the value of the reflection coefficient is indeterminate. However,
a straightforward limiting process shows that the reflection coefficient is given then by

R = ev%éni

for a wave normally incident on the fixed edge of an unbafled membrane subject to heavy
fluid loading. This value has been verified by independent means.

The specific results of this section have been confined to the range of fluid loading defined
by M = eN, N <€ 1: the so called ‘very heavy fluid-loading’ limit. In the two cases considered
here in some detail and which involve an unbaffled membrane with either a free or fixed edge,
we have shown that in the stated limit the general result of § 2 is still valid: an incident surface
wave 5; = dexp [ik cos 0, x, + ik sin 0 x,] is reflected from the edge of a semi-infinite membrane
generating a cylindrical ‘acoustic’ field in the process. The resulting field on the membrane
comprises coupled modes arising from the pole contributions associated with the zeros of
K(k, sin6,) in R, and an algebraically decaying branch line contribution to the inverse Fourier
integral which determines the structural response. At great distances from the edge the sole
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propagating wave is that arising from the single real positive zero of (6.10), at k = «k cos §,, and
this wave assumes the form

7, = Rdexp [—ik cosO,x, +iksin b x,].

For the two postulated edge constraints it has been shown that, to leading order at least, the
reflection coefficient R merely assumes the form of a phase shift, i€« with 4 = + 1 corresponding
to the unbaffled configuration with free and fixed edges respectively. Moreover, it is still possible
to write down an expression (6.19) defining 6, in terms of certain integrals that are critically
dependent on the angle of incidence, 6,,, although an inspection of (6.19) reveals that the phase
shift on reflection is now an extremely complex function of incidence angle rather than the
constant value(s) associated with normal incidence. What is envisaged as useful in future
applications involving the prediction of the free modes and resonance frequencies of finite panels
under localized forcing is a simple functional relation expressing the reflection coefficient in terms
of the angle of incidence 6; in view of the complicated nature of the Wiener—-Hopf kernel it
would perhaps be highly optimistic to expect a simple expression to emerge from the analysis.
However, the numerical plots, as presented in figures 1 and 2 do display significant general

incidence angle, 6, incidence angle, 6,
1 . 2
0 37 0 T
nl __%11 1
1
v
~
d ©
o
& 5
& =
= 43
@n o —iTF
g E
< a,
[
_u
121{ \
— b —ml

Ficure 1. Numerical plot for oblique incidence, unbaffled membrane, free edge.
Phase shift calculated from (6.19).

Ficure 2. Numerical plot for oblique incidence, unbaffled membrane, fixed edge.
Phase shift calculated from (6.19).

trends, particularly for the reflection at a fixed edge, when the phase angle and angle of
incidence appear to be almost linearly related over the whole range, 0 < 6, < ir. Finally, it
is not felt that the general result — that the incident wave is reflected without change in
magnitude, but merely suffers a phase shift on reflection —is in any way special to the
combination of configuration and edge constraints considered, but that it is an outcome of the
assumed heavy fluid-loading limit and, in particular, a manifestation of the virtual fluid
imcompressibility in this limit. Thus we feel that the cases involving membranes and simple
edge constraints may be regarded, in some sense, as being typical and as such they are useful
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in circumstances where the solutions for more realistic physical situations are at present
unavailable.

7. EXTENSIONS OF THE APPROXIMATE METHOD FOR HEAVY FLUID LOADING TO
GEOMETRIES INVOLVING NON-NORMAL INCIDENCE . STRIPS AND RECTANGULAR
PANELS UNDER POINT FORCING

The extension of the approximate method of §5 to finite panels subject to localized drive
is of great practical concern. One such configuration, namely the circular plate with eccentric
drive, was dealt with in a previous section. A simple treatment was successful for that particular
problem because the circular panel is (like the strip with line drive, but unlike the square panel
with point drive) essentially a problem of normal incidence and locally planar wavefronts.
However, in geometries that involve straight edges meeting at an angle the simple approach
of the previous chapter is of little use because waves are now incident on a given edge from all
angles and the reflection coefficient is no longer a constant even at substantial levels of fluid
loading. Two typical problems involving the oblique incidence of a surface wave on the edge
of a semi-infinite membrane have been examined in some detail in §6. In the low frequency
limit it was shown that, when the surface is unbaffled and the edge either fixed or free, the
reflection coefficient can be written as a phase shift which is a function of angle of incidence
alone. We now describe how that result may be used to obtain the solutions to realistic problems
involving finite strips under point drive and, more importantly, finite rectangular panels subject
to localized eccentric forcing and with arbitrary edge constraints. For reasons of simplicity,
which will soon emerge, we confine our attention to cases in which the structural component
of the coupled system is a membrane; the application of the method to thin elastic plates will
be mentioned later.

Calculation of the acoustic field, unless all the dimensions are small compared with the
acoustic wavelength, is not simple and we confine our discussion to the surface response alone.

7.1. Hlustration from vacuum dynamics

First, we consider the ‘in vacuo’ problem: a homogeneous elastic membrane of tension 7" and
specific surface mass m, lies at rest in equilibrium in the region |x,| < a, |x,| < & of the (x, x,)
plane, and the edges of the membrane are fixed. The system is excited by the time harmonic
point force, F,d(x,) 6(x,) £3 71 (v > 0), which is located at the origin and acts in the positive
direction of the x;-axis. If the velocity normal to the surface in the positive x,-direction is denoted
by V(x,, x,), then the time reduced problem requires the solution of

(0%/0x3 +02/0x3 + k) (V/ —iw) = (B/ T) 8(x,) 8(xy), (7.1)

subject to ¥ = 0 on lx,] = a, |x5| <8,
(7.2)
x| = 6, x| <a.
Here, as usual, k,, = (mw?/ T)i is the vacuum free wavenumber on the membrane at frequency
w.
In precisely the same way asin §5, itis argued that the surface response comprises two distinct
parts: first, a term associated with the response of an infinite membrane under point drive, this
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totally incorporating the singularity due to the forcing; and second, a correction field to allow
for the presence of travelling surface waves arising in the reflection process at the edges.

But the response of an infinite membrane to the point force F, located at the origin is easily
obtained by Fourier transform methods. Indeed,

iwk, f f exp (ik,|x,| +ik,|x,|) d&, dk,
C(2n)2 T (K3+k2—K2) ’

V(1) = (1.3)
where the usual convention applies to the path of integration in each integral. For fixed values
of k,, the single pole at k, = + (k2 — k2) is picked up when the k,-contour is closed in the upper
half-plane. (This pole is either real or purely imaginary according as &, S k,.) It follows from
(7.3) that

Voo (%1, %) =

0 2 __}2
ok, f exp [1(k3, — A2)} |x,| + ik,|x,|] dk (7.4)

anT (k2 — k)3

Since the wavenumber components of the travelling surface modes associated with the
unforced system must be such that £} +£2 = &2, it is possible to introduce the field V
by the edges at |x,| = @) in the form

f foo exp (k|| + ikylx,|) (k2 + k2 — &2, )dk, dk,
G(kys k) ’

(caused

(7.5)

where 8(k) is the Dirac delta function (Lighthill 1958, p. 10) and where G(k,, £,) is an, as yet,
unknown function — analogous to the constant of equation (6.4) of Crighton & Innes
(1983) — which is subsequently fixed by satisfaction of the phase shift criterion relevant to the
imposed edge constraint. Equation (7.5) represents a solution to the homogeneous problem with
even symmetry in x, and x,, comprising all the waves with total wavenumber (k2+ k2)? equal
to the free wavenumber £, .

The replacement of §(k¥+£A2—£k2) b

[O(ky — (kf —K5)) + O (ky + (Ko —KD)9)1/2(k5 — ky)?
in (7.5) allows evaluation of the £;-integral:

A L L A e e B LD
=) 2 —RIC(k =R k) Rt ) R — KGR =R, k)

dk,,  (7.6)

where we have exploited the fact that
G(—ky, ky) = Gk, ky). (7.7)

(This property follows from the assumed symmetry in an even-mode solution, though the
method may be easily modified to deal with antisymmetric modes.)

It is now possible to write the sum V, = V_ +V_ in a form in which the waves incident and
reflected at the edge |x,| = a are easily identified. Specifically,

@ ikl citkh—kDial o 1 3 pan
= f_w e [2nT+G(( S k)]exp[l(km—kz)z(lel—a)]dkz

o) ellc2|:1:2| e—l(k2 —k3)2a 1 . s
| S A R stk (1

— 0
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Then it is argued that for fixed values of k, the relationship between the terms in
exp [ +i(k2, —k2)% (|x,] —a)] is that which holds in the corresponding semi-infinite problem with
a fixed edge at x; = a.

In the presence of fluid loading this is only possible if the plate size is large (in some sense
which can be quantified) so that the coupling with distant boundaries through the body of
the fluid is weak. For the specific case of membrane in a vacuum the relationship is exact because
the effect of the boundaries is simply included in the propagating waves whose reflection is being
discussed. It could not be exact for an elastic plate ‘in vacuo’ because of the coupling via
evanescent modes, but the coupling would be weak for a plate whose size exceeds a vacuum
plate wavelength.

Consider an identical unloaded semi-infinite membrane and let the wave

7; = dexp [iky, %, cos 0 +ik x,sin 0] (7.9)
be incident from x; = — 00 on the fixed edge located at x; = 0. Then the total deflection is
7 = dexp [iky, x, cos 0+ ik, x, sin 0] + Rd exp [ — ik, x, cos O + ik, x,sin 0], (7.10)
and the imposed constraint #(0) = 0 fixes the reflection coefficient as
| R=—1. (7.11)
Using this in (7.8) determines the unknown function

G(, — B ky) = — (0Fy/4n T) cih—ibba /cos [ (£, — k3)4al, (7.12)

dk,, (7.13)

and hence V= wk jw e¥el®el sin [ (2, —K3)% (a—|xy])]

S anT (k2 — k2)kcos [ (K2, —k2)id]

— 00

a result we expect to be exact for the membrane in vacuum.

Although (7.13) is the solution of the governing differential equation for the motion of the
membrane which vanishes along |r,| = a, it does not (and cannot) satisfy the remaining
boundary condition along the edges parallel to the x,-axis. Hence, V, may be simply identified
with the response of an unloaded strip membrane, infinite in length, but of finite width 2a,
excited by a time harmonic point force acting normal to the surface and located at the origin.
Evaluation of the integral involved by the calculus of residues, leads to a more convenient form
in terms of a sum of normal modes. On closing the contour of integration in the upper half-plane,
it follows that

V= =20 3 et cos [ (nx,/a) (p+ D))/, (7.14)
2Ta -,
where K, =+ [k}, — (p+3)n*/a’, (7.15)

and «,, is real or purely imaginary according as k, 2 (p+3) n/a.

A solution to (7.1) which does satisfy the edge constraint along |x,| = b is easily constructed
by adding to (7.14) a sum of suitably chosen eigenfunctions.

Thus we let

wF,

V=_2Ta

§ el*nl®l cos [ (mx, /a) (p+3)]/x,+ % v, €08 (K, %,) cos [(nx,/a) (p+3)],  (7.16)

p=0 p=0
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where each coefficient v, is fixed so that the individual modes satisfy the phase shift criterion
at |x,| = b. Separate modes have reflection coefficient —1, in accordance with (7.11), if

v, = (0F,/2Ta) e*»®/k , cos (k,b). (7.17)

»
Thus it finally emerges that

Viex,) = iwF, § {cos[(nxl/a) (p+1)]sin [Kp(b—|x2|)]}‘

" 2Ta =0 K, €08 (K, b)

(7.18)

However, for simple uncoupled problems such as this there are many well established
methods of solution. One usual approach is to expand the unknown quantity V(x;, x,) as a
double Fourier sum X%_ 2% (v cos [(¢+3) mx,/b] cos [(p+3) mx,/a] and this rapidly leads to
the familiar result

1 § § cos [(q+1)1tx2/b] cos[(p+1)1tx1/a]
(@b) poo g0 (PHD)?WP/aP+ (q+3)° /62 —k,

The two expressions (7.18) and (7.19) are easily reconciled by re-writing the latter as

iwF,
V(xy, xy) = +l%: (7.19)

Vit n) =+ 50 s B 8, con[(p+3 /), (7.20
where S = 5 s [(g+3) mhxyl/0] (7.21)

P (gm0t =g

with «,, as previously defined by (7.15). Series of this type are easily summed by contour
integration (Titchmarsh 1947). In our particular case we consider ¢ f(z) dz where

T cosec Tz cos [(zm/b) (|x,| — &) + m|x,|/26]
(z+1)2n?/b%—«k2 ’

and C is the circle z = Rei?, R large. Now on the circle it can be shown that

Sz) = (7.22)

|f(z)] ~ R™texp [ — TR |x,sin 0|/ 2b].

Also f(z) has simple poles within the contour at the points z=g¢, (¢ =0,+1,+2,...) and
z = —}+bk,/n. Thus, letting R— 00, we get

= (b/2k,,) sin [k, (b—|x,|)]/cos (k,b), (7.23)
and on substitution into (7.20) we obtain

ik & sin [y (b—lxl)] cos [(p+D) mx,/a]
Vixp x) = 2Ta pz=0 - K, cos (k,b) ’

(7.24)

This is in precise agreement with (7.18). However, we do not advocate adoption of the approach
outlined here to simple cases where elementary methods suffice; rather we emphasize that the
present method is particularly useful for coupled problems involving heavy fluid loading where
conventional methods fail and where, at the moment, there is no hope of a rigorous treatment.

7.2. Fluid loaded strip and rectangular panel

To validate this claim we consider an identical unbaffled rectangular membrane, but now
totally immersed in a compressible fluid of density p and sound speed ¢,. The edges of the panel
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326 D. G. CRIGHTON AND D. INNES

are either fixed or free (or indeed any combination of the two if one is prepared to forgo
convenient symmetry). The infinite membrane response is easily obtained by transform
methods and we find that, in general,

1wF exp (ik,|x,| +ik,|x,|) v dk, dk,

g (R + kS — ko) y—pkly

w —

(7.25)

where vy is the ubiquitous acoustic square root function. In the heavy fluid-loading limit we
recall that, to leading order at any rate, the fluid is incompressible and it is appropriate to
replace y by (k?+k2):. Hence

1wF ®© exp (ik,|x,| + ikylxy|) (K3 +K2)2
Voo 21t f j (R )t — ke dk, dk,. (7.26)

In the low frequency limit we write k = (uk2,)3 so that « is the free subsonic wavenumber with
fluid loading taken into account. Then, for fixed values of k, and if k|x,| > 1, the dominant term
arises from the pole at £, = + (k*—k2)%. Thus

wFy [© ol exp (i(k2— )} )
Vo ~ o TJ. (o dk,. (7.27)

By analogy with (7.5) in the assumed limit we take

©  exp (ik|x, |+ ik,|x,|) O (K2 + A2 —k®
f J P (iK%, (1&212)(1 2= 4k, dky, (7.28)
1> 2

with G(k,, k,) to be determined; once again we assume that G is even in both arguments and
thence we obtain

1 elfelel fexp [i(k2— k)4 x) ] +exp [—i(k2—£3) x,[]}
=l (=BG R W 1
Near [x,| = a,
1 00 elkgLZ'zl K'z kﬁ)*“ (,_)F(‘, 1 . 2 2\1
Vo=Vt~ §f_w (k2—k2)} [3RT+G((K2—/€§)%, kz)]exp{l(’( — k)2 (Ix)| —a)} dk,

1 foo eikelzel g—i(k2—KDia 1
e}

2 (k*—k2)} [G((x?—ké)%, k)

: |exp (=it =2 el —apaby.~ (7.30)

Now we choose G((k2—k2)%, k,) so that the phase shift on reflection at |x,| = a is @(k,) where
the functional form of @ depends on the imposed edge constraint and in a given problem should
be chosen accordingly. In any case, when this criterion is satisfied ¥ reduces to

iwE, [© eikelel cos {(k2—k2): (a—|x,|) +10O (k,)}

— 0
=) (e B)lsin (=R a+10(Ky) dky- (7.31)

Further, if A, ; (j = 1,2, ...) denotes the jth zero in R, of the transcendental equation

(K2—k)ia+1O(k,) =pm, (p=0, +1,...), (7.32)
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then it follows that
Vg~ ZO _Zl vy, 1 €XP (1A, jlx,]) cos [(|x,]/a) (pr—3O (A, ;)]s (7.33)
p=0 j=
where Vp g =— (wF)/3T) [%(K2—/\2pyj) @’(/\pyj) —a/\p,j]“l, (7.34)

and where the prime signifies differentiation with respect to the argument.

For general functions @ (k,) the sum over  in (7.33) is infinite. However, when @ (£,) takes
simple forms, the index may take on a finite number of values only. For example, when @ (£,)
is constant there is a single relevant root of (7.32) for each value of p, and (7.33) then assumes
a form similar to the vacuum result; we shall return to this later.

We remark at this point that (7.33) represents the field generated by the point force acting
on an infinite strip membrane, |x,| < a, —00 < x, < 00; the field (7.33) satisfies the required
conditions on x, = +a, has the appropriate singularity for the point force, and has outgoing
wave behaviour as x,—>+ 00.

Returning to the finite rectangular panel, the boundary condition at |v,| =5 may be
accommodated by adding to V, the double sum

§0 jf: E, ;cos[A, ;5] cos[(x,/a) (pn—30 (A, )],
p= =1

and then satisfying the phase shift criterion at x, = 4. This is a straightforward matter and yields
the following expression for the surface response:

wFkF 2 & X
R b e )]
y cos [A, ;(b—|x,]) +30 (A, ;)] . (7.35)
[B(*—22 ) O(A, ;) —al, ,]sin[bA, ;+30(A, ;)]

Itis not felt worthwhile to pursue the general solution further; instead, we focus on the specific
case alluded to earlier: that of the unbaffled membrane with fixed edges. It has been observed
from figure 2 that in this case the phase shift is fairly constant over the whole range of incidence
angle, 6,.

An inspection of (7.22) for A, ; shows that when @ = @, a constant, there is a single root
in R, corresponding to each value of p, given by

A, =+[k2—(p—(1/27) Oy)2 n?/a?]t. (7.36)
Thus a crude first approximation to the normal velocity of the panel is

1wk & feos [(mx,/a) (p—(1/21) B)] cos [A,(b—|x,|) +36,]
3a T Z{ /\psin[/\pb+%@0]p } (7.37)

V(xy,x5) ~
p=0

By analogy with the vacuum case it may be inferred that this is equivalent to

210k 2 2 [cos{(ry,/a) [p—(1/2r) O ]} cos{(nx,/b) [¢— (1/27) O,]}
Vowr) ~ 357 2 Z{ 72/ [p— (1/21) O, + (/5% [qg— (1/2m) O, —x® } ’

p=0 g=0

(7.38)

and it is a straighforward matter to verify rigorously that this is indeed so.
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Equation (7.38) is similar in form to the vacuum result and this is particularly obvious if
we recall that, when the edges of the membrane are fixed,

O_, ~—2m. (7.39)
Hence
2 1wk & S cos [(mlx|/a) (p+5—ds)] cos [(mlxy]/b) (¢+5—4)]
Vitpg) ~5— o0 ¥ % . 218 2 8. (740
T T 2 e GH A (e (4
Therefore the panel has free modes of oscillation (p, ¢) with mode shapes
cos [(mlx,|/a) (p+3—ds)] cos [(mlxyl /8) (g+3—30)];

the natural frequencies are of the form

wpe = (T/m) Ni[(n?/a?) (p+5—35)°+ (*/b%) (¢ +3—&)* ] (7.41)

It should, perhaps, be repeated that these results are invalid near the edges, near the corners
and in the immediate neighbourhood of the drive point. At distances within O(k~1) of the
boundary the total field may be taken care of by using the full solution to the semi-infinite
Wiener-Hopf problem and that comprises —for frequencies below coincidence at any
rate — propagating incident and reflected waves, the latter associated with the residue
contribution from the real pole in R, waves that decay exponentially away from the membrane
associated with complex poles in R, which of necessity have a positive imaginary part, and
finally a branch line integral that may be expressed as a Fresnel (error) integral (Noble 1958),
of a type familiar in all half-plane problems in which the integral contains poles and square
root branch points. In the vicinity of the forcing where the wavefronts are not locally planar,
an expression of the above type in terms of normal modes is obviously inappropriate. For
membranes large on the structural wavelength size (thatis, large in the sense thatk,, a, k,, b > N3)
the complementary functions associated with the edges may be used as they stand, but the
infinite membrane contribution should be retained in the full integral form (or equivalent),
as was done in §4 for the circular plate. The motion near the corners is not an easy matter
to resolve; it requires the solution to the quarter-plane scattering problem and that is
unavailable at this moment. If that solution were known, a thorough analysis of the problem
could be done on the basis of matched asymptotic expansions.

We also note that, although the mode shapes and natural frequencies are close in form to
the vacuum dynamics (in practice N3 is unlikely to be very much less than unity), the amplitude
of the modes with high values of p or ¢ in the loaded and unloaded cases is in the ratio 2:3
for a given K.

We remark finally that the expression for the drive admittances for the strip and the
rectangular panel are immediately derived from (7.33) and (7.38) respectively. We have not
obtained any more succinct representation than the doubly infinite series, but can observe that
while the drive admittance for the rectangle is purely imaginary, that for the strip includes a
resistive component associated with the modes which can propagate to infinity along the strip.

8. CONCLUSIONS

In this paper we have shown that the original strip plate problem of Crighton & Innes (1983)
is typical of its class and we have obtained results, analogous to those of § 6 of Crighton & Innes,
for a wide variety of configurations and edge conditions, each of some practical interest. We
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have also demonstrated that the method can be applied to forced panels with curved
boundaries; for example, the circular plate with eccentric drive has been discussed. In both
classes of problem we have presented simple expressions for the drive admittances in the heavy
fluid loading—low frequency limit.

Furthermore, we have illustrated the fact that the basic concept, i.e. in the heavy fluid loading
limit, the structural reflection is characterized by a mere phase shift, remains true even when
the incidence upon the edge is oblique. The prototypical semi-infinite Wiener—Hopf problem,
needed here as a building block in the study of more complicated finite structures, is
correspondingly more difficult, but we have obtained expressions for the phase shift on reflection
for two different edge conditions on an unbaffled membrane. These expressions are not
particularly transparent and the general trends are more easily identified from numerical plots
of phase shift against angle of incidence.

We have then extended the approximate method in a general form suitable for use in
two-dimensional planar problems. In passing we have obtained, as a by-product of the method,
an expression for the response of a strip under point drive. The veracity of the method in one
particular case — the iz vacuo rectangular membrane — was indicated ; for such a simple problem
the method produced an exact expression for the surface response in total agreement with that
from elementary (that is, Fourier series) analysis.

In the heavy fluid-loading limit we noted that for one case in particular, the unbafiied
membrane with a fixed edge, the phase shift is particularly simple. This enabled the natural
modes and frequencies to be written down in a form which is very similar to the vacuum
dynamics.

In almost all of the model problems considered in this paper we have concentrated on
configurations involving symmetric excitation provoking an even-mode response. Similar
analyses for sums of odd or general modes are straightforward. In every situation considered
in detail we have predicted the existence of ‘natural modes’ and associated resonances (to
leading order at any rate).

The key factor in this assumed limit is the near incompressibility of the fluid, and the
occurrence of resonances is essentially linked to the basic ‘hydrodynamic’ nature of the fluid
motion.

In a simplified plate model, involving a surface of constant stiffness, we have been able to
verify that the energy lost in the edge-reflection process exactly balances the radiated acoustic
power. In the incompressible limit this scattered power vanishes and the magnitude of the
reflection coefficient is unity.

For the general coupled plate—fluid complex in the assumed limit the calculated scattered
acoustic field is a quite insignificant fraction of the total incident power and this leads to a
consequent build-up of structural energy and the occurrence of resonance. This is quite unlike
the mechanism in light fluid-loading problems where the effect of the fluid is negligible and
to leading order its presence may be ignored.

It would be possible to attempt to determine the natural modes and frequencies of heavily
fluid-loaded membranes for configurations in which the phase shift @(6,) is rather more
complicated than the constant value attained in the specific problem examined in detail here,
though this is unlikely to produce simple results. We prefer at present to consider the equivalent
problem in which the membrane is replaced by a plate. A general low frequency solution,
analogous to (7.35) in the form of a double sum is easily written down, but the progress one
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can make from that point is limited by the form of the phase shift function @(6,). The technical
difficulties introduced lie in the Wiener—Hopf split of the dispersion function which now involves
(in addition to 6,) the Poisson ratio, v, of the plate material. This is introduced via the assumed
edge conditions (see Rayleigh 1945, p. 372). It would be highly optimistic to expect to achieve
a Wiener-Hopf'split for general values of v, but it is hoped that simple results might be obtained
in some assumed v <€ 1 limit, or indeed there may possibly be gross simplifications associated
with specific parameter values. These studies are promised in the near future.

In conclusion then, we feel that we have made real progress in the understanding of the
response of finite panels to localized forcing. An approximate method has been devised which
may be used in heavy fluid-loading problems for which no rigorous approach is possible, and,
moreover, the simple concepts on which the method is based may, we hope, be applied in
conjunction with finite element methods to extremely complicated structures for which advance
is otherwise impossible (if the effects of fluid loading are to be retained at all).

This work was supported by the United States Office of Naval Research under grants
N00014-77-G-0072 and N00014-81-G-0010 and monitored by Dr R. L. Sternberg through
code 425.
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APPENDIXES

A.1. The factorization of the Wiener—Hopf kernel for the thin plate; an exact factorization and low
Srequency asymptotics

In this Appendix we first present various factorizations of the Wiener-Hopf kernel,
K(k) = (k*—ky) (k*—k3)s— ks, (A1)

into factors K, (k) analytic and non-zero in overlapping regions R, of the complex wavenumber
plane and such that

K(k) = K, (k) K_(k). (A 2)
An exact factorization (valid for all parameter ranges) is obtainable, but it is not particularly
illuminating and in specific limits alternative approaches involving approximation at an earlier
stage are certainly speedier and easier to handle. In many cases the leading term of K_ (k) is
all that is required and therefore we begin by considering an approximate method for producing
leading order terms in the heavy fluid-loading limit specifically.

(a) An approximate factorization

Introduce the new variables & = &z, k, = Mk, p/k, = 0°/M into (A 1); then we have
K(k) = (kp/ M) H (2), (A3)

where H(z) = M(z4—1) (22— M)t —g®, (A 4)

Our usual characterization of the heavy fluid-loading limit (see §1 for the precise definition)
is equivalent to considering (A 4) with ¢ = O(1) and M < 1. At frequencies well below the
‘coincidence’ frequency (M = 1) it can be shown that an approximation of # (z), uniformly
valid in z, is given by

A (2) ~ Mz4(22)t— 0, (A 5)
where (%)t is to be interpreted as [z| on the real axis and may then be continued throughout
the entire z-plane, cut from 0 to +io0 in R, respectively, as zsgn Re z. The approximation
of the kernel given by (A 5) seems reasonable on physical grounds for the following reasons.
For M < 1 the fluid motion is almost incompressible and hence (z2— M?): may be replaced
by (z%)% unless z = O(M) when, in any case, the first term in (A 4) is negligible. For z = o(1)
the fluid loading dominates the surface response and only when z = O(o/ M?#) are the elastic
forces large enough to balance the surface inertia terms and then it is appropriate to replace
(z*—1) by z* only.

22 Vol. 312. A
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For convenience we now introduce the new variable t= M3z in (A 5); then logarithmic
differentiation of A" (¢) = (%)t — o gives

NCACE NI "

Now let the zeros of the denominator (#°—¢??%) be denoted by +¢, (n=1,2,3,4,5); that is,

t, = ocexpi(n—1)mi. (A7)

n

We note also that the real zero, ¢, = o, corresponds to the unique subsonic wavenumber
k=k,o/M % in the heavy fluid-loading limit. Furthermore, if we introduce quantities a,, such
that

at =10 (n=1,2,3,4,5), (A8)

i XN sy § o, L L) (89

2 2 \1 n=1 n n
d H(t _tn)2 t—t t+1¢
1

it follows that

This type of procedure for determining Wiener—Hopf factorizations is standard (see, for
example, Crighton & Leppington 1970 or Cannell 19776) and continues as follows. The additive
split functions of (#2)% are known (Crighton 1976) to be given by

() = P_(¢t) + P_(¢), (A 10)

where P, (1) = it+litin, ¢, (A 11)

and with the branch cuts for the logarithm running from 0 to Fico respectively. Moreover,
with these cuts the functions P, (f) have the property that

P(—t) =P (). (A 12)

These definitions having been used in (A 9), manipulation of a typical kind allows the right
side of (A 9) to be written as a sum of ‘ plus’ and ‘minus’ functions. Concentrating on the ‘plus’
function alone leads, after a single quadrature, to

5 49 5 feo] 0
Aoy = A, T (highexp{ =2 5 [ [T g dnche (7S ) (a1y)
n=1 t

2__ 42 2 __ 42
n=1 tg& u tn t‘;z t u tn

with a similar expression for " _(t). The constant 4, is chosen, as is often the case, in fulfilment
of the convenient requirement 4", (—t) = #_(¢) and thus

A = e (A 14)

Hence, from (A 13), A, (t) ~—eTHigd as |t|>o0in R,. A 15
+ +

The integrals in (A 13) may be evaluated in terms of complex dilogarithms, but such expressions
are of marginal practical use; alternatively we consider the consequence of (A 13) in a variety
of interesting cases.
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(i) M<1, k= O(k,)

10° 5 0 0
A, (f) ~ a’ge‘%i"exp{—% > [—l-f ln+udu_ln+lnf du ]} =cgle ™. (A 16)
0

2_ 2 4 2_ 2
ni ltnJo w1, 29 u'—t,

Hence, A, (t) A _(t) ~ —0o® as M—0 for t = O(M3), as expected from, say, (A 5). We note
that (A 16) is also valid for £ = O(k,) and hence

K, (ko) ~ (K ot/ M?) eHim, } A1)
K, (Aky) ~ (B ob/M}) e ¥, A= 0(1).
(i) M <1, k= «(=k,o/M3)
Since the wavenumber £ = k corresponds to ¢ = ¢ then
A (o) ~ —eHnglg, (A 18)

with

5 i49 5 1 <X)l d l t 0
0= 11 (141, /o exp{—Z $ [ ["Hetde ety [7_di L (5 4)
n o

2 __ 42 2__ 42
n=1 n=1 o U tn n u ln

the evaluation of ¢ is of some interest. First, we deform the contours of integration (for a fixed n)
on to the arc of the circle u = oel? (0 <O <Yn—1)m, and the ray u=1¢,z, (1 <z < ),
and close with a circular arc at infinity in R,. Then

}53 1 °°ln+udu_ln+th‘°° du]
I ut—12 8 ), -8

n=1 g n

2 3 5
= %+# > e =D [CL(A(n—1) 1) + Cly(n —L(n— 1) ) +1(n— 1) wIn tan & (n— 1) 7],
n=1
(A 20)

wherein Cl, is Clausen’s function (Lewin 1981).
The known properties of Cl, allow the sum in (A 20) to be evaluated with result in In 5. Thus
it follows from (A 19) that
g = 10t ei™, (A 21)

and finall H (k) ~ —k0o8(10)k erimi/ M3, (A 22)
y + D

In the majority of instances these leading-order approximations suffice. However, when
further terms in the asymptotic series are required, exact expressions like (A 13) are a
convenient point from which to start.

(b) An exact factorization

Consider the logarithmic differentiation of

H(2)=H,(2) H_(z) = M(z2— M2} (24— 1) — 0%

after some manipulation we obtain

d A (z) H_(2) ”

—[ln{ Mo z(5z*—4M?22—1) 1
dz [M?2(z2— M?) (24— 1)2—g10)}

T ME M) @D o] (M

(A 23)

22-2


http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

o \

A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

334 D. G. CRIGHTON AND D. INNES

Now let the zeros of M?(z2—M?) (z*—1)?—0c'® be denoted by +z,, n=1,2,3,4,5, with
Imz, > 0. Also define

a;t = {(d/dz) [M¥(22— M?) (z4—1)2—al°]}z=zn,} (A 24)
Bo = ayz, (524 — 4M?2%— 1),
and introduce the additive split of (z2— M?)~% (Noble 1958, p. 20) given by
(Z—=M?*" = Q,(2)+Q_(2),
with Q4 (z) = [1/m(z2— M?)¥] arccos (+z/M). (A 25)

For complex z, arccos (z/ M) should be interpreted as
iln{[z+ (22— M?»i]/M}, —n<Imlnz<m,

with the usual (acoustic) branch cuts for (22— M ?)%. Thence, concentrating on the @ function
alone, we find that

4 {m [-_""(_{?g_)]} — Mo z = P 5 10.(2) — Qu(z,)]

55 _ P
+ Mo El( e )[Q+()+Q+( )]s (A 26)

where we have used the fact that
Q.(—2) = Q_(2). (A 27)

For 0 = O(1) and M < 1 the roots z,, and the quantities «,, £, may be calculated to any
desired order. For the purposes of §2 it is enough to know that

2y ~ (0/M?) exp ({(n— 1)) [1+ (M¥/50%) exp (—4(n—1) 1i)],
a, ~ (1/1002M%) exp (—&(n—1) mi) [1 — (3BM3/50%) exp (—4(n—1)mi)],} (A 28)
B~ (1/20°MY) exp (—4(n— 1) i) [1+ (M%/50%) exp (—(n—1) mi)].

(i) M<1,k=0(k,)

For z = O(1) the functions @, (z) and @ _(z,) occurring in (A 26) may be replaced by their
power series expansions and we find that

d A, (z)
—{In{—"2\" 1] _ 1 2Af2/ o3
dz[“{H5=1(z+zn)%}] a, M}/ +a, 22 MY a® + O(M), (A 29)
where a, = et™ /2 cos L+ O(M?)
(A 30)
and a, = et™/2sinln + O(M?).

Now

5
S (z+2,)t = — (o8/MY) {1+ b, Miz/20 + (3b,— 162) M322/ 0% + (1by —1b, by + 55b3) M3z /o
n=

1

+ (364 —§by by — 303 +75b1 by — 13sb1) Miz* /ot + O(M)}, (A 31)
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where b, = —et™/sin &,
_ 2cosim —imi
27 singm ’
(A 32)
_ 2cosim .
b = Singm
and by = et"i/sinfem. |

After some manipulation, term by term integration, cxponentiation and a little more
manipulation the final outcome is that, for £ = O(k,) and in the low frequency limit,

3 —1 1 2 3
K, (k) ~ k%"j;% 2”{1 +61k’:{7" k +”2éﬁ K ”i‘kg{r fa} (A 33)
where the coefficients are given, to leading order at any rate, by
¢, = —ie¥™ /sinim,
eini (A 34)
Cy = ~Ssintin’

The constant 4, was determined, by comparison with (A 17), to ensure that K _(—£k) = K_(k).

The asymptotics may be partially checked by using the rigorous method of Kranzer &

Radlow (1962). In their notation, ¢ = —1/0® and a = 5; therefore, we have
b= 5 ini ®_dt = i_
no o 1+ osinin

Allowing for conversion to the upper half plane, and a slight modification in notation, gives
H* (k)| A (k) ~ 1 —ied™ M3k/k o sinim,

which is in agreement with (A 33) as far as it goes. However, we believe that the direct method
presented here is more adaptable than that of Kranzer & Radlow, elegant though that is. We
have a straightforward, though, admittedly, sometimes arduous, technique for generating
higher-order terms (which Kranzer & Radlow fail to do). The method is also valuable in
situations where their exact method is impotent. One instance in which the rigorous approach
is ineffective is when z = O(M™3); the theory of Kranzer & Radlow gives explicit results only
for z = O(1).

(i) M <1, k=«k(=k,o/M?)

Without going into detail we simply state that, using (A 26) as a starting point, an analogous
treatment yields

K, (k) ~ — (B ofge¥im/ M) [1 +aM?/504], (A 35)
with ¢ as previously defined (by A 21) and

a =35—i(cotin—3/(10sinim) +1/(10 cosm)). (A 36)
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(iii) M <1, [k o0

Expressions for the factors of H, (k) = K, (k)/y (k) as |k|->00 in R, are also vital. Again
it is a pedestrian yet tedious procedure to obtain such expansions. Commencing from (A 26)
and formally replacing the quantities involved by the relevant asymptotics, it is a simple matter

d A, (2) ioc ef"iz? jgletiz?
<h + ~
dz { n[HLI (z+zn)%]} 2M? cos &m + oMTsn in’ (4 37)

to obtain

where the anticipated logarithmic terms all have coefficient zero, to this order at any rate.
Whence,

A
LEIC 1+94+545, (A 38)
A+ H (Z"'Zn)é
n=1
with 4, a, and g, given by
a, = — (i0/2M3) 8™ /cos T,
ay = — (0°/8ME) ™ /cos® &, (A 39)
a; = — (i0® ™ /6 M%) [1/sindn + 1/8 cos® fym].
5 L s by by by .
Now Miz+z,)i~2 1+—Z—+E§+E§... , as|zl>o0inR,, (A 40)
1
where
by = (o/ M?) §i(e™0™ /sin ),
by = (o) M%) [ef™ cos int/sin 57 + Je 3" /sin? fynt], (A 41)
by = — (03/ M?3) [+ €™ cos Int/sin &7 +ie 1"/ 16 sin® J5m +4i ef6™ cos in/sin® fm].

Multiplication of the two series leads to complicated trignometric coefficients that simplify
grossly. The upshot is that

K (k e iM kS 1+§p£ el 1 f2g? M (1)2_ k3 o® e o (l_sin2%1t)(l)3:|
+(B) ~ == Misinin bk M? 2sin?in\k) ~ M?i6sin®ln cosin J\k) |
5 5 5 5
(A 42)

This almost recovers the parallel result of Cannell (1976) which we believe to be in error in
the coefficient of £73.
Further, since H, (k) = ei® K (k)/(k+k,)3, it follows that

3
H (k) ~ #K S h k™, (A 43)
n=0
where #, = 1,
hy = (kyo/M?) efi™ /sin I,
— (R g2/ M) et /9 gin? L
hy = — (k30 / M5) e75™ /2 sin? ¢, (A 44)
hy= — (k3 0/ M?) (e~1™ /6 sin® Imt) (1 —sin®im/cos §m)

and H = (k%) MY)e™™.
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These are all the asymptotics required in the unbaffled and baffled geometry Wiener-Hopf
problems of §§2.2 and 2.3.

A.2. The determination of the unknown constants arising in the unbaffled geometry Wiener—Hopf
problem of §2.2

The four equations in (2.16) and (2.18) may all be expressed in the form
Ey+ E\A—[wd]y (A+K)] [K_(A) =K_(—«)]+io P(A)/K,(A) = 0, (A 45)

with A = +k, respectively and where K, (—s) is to be interpreted as K(—s)/K_(—ys).

We eliminate E; and E, from these equations by adding and subtracting in pairs; a further
addition and subtraction of the resulting equations and use of the asymptotics (A 34) and (A 35)
for K, (A) (A = £k, +ik,) and K, («) leads to the following set of equations:

4E,+ (iwdks/ Nb) [4(gei'™ 4+ 1) +4(3(ged'™ + 1) +Laged™
+61+63+6163+16‘1——64)NA (wy”(0) N%/k’;’)[4+4cl(ca—%c§)N§]
+ (" (0) N¥/k3) [ —4icg N4 (1—i )(264"'1‘04—03) 4
+ (w9 ()N‘/lc2 [2c2 N3] —wy(0) 3 N[ —dic; Ni+ (141) (—2¢,+2¢,(c;—§¢3)) N¥] = 0,

—4E k,+ (lwdkz/Nw ) [4N3(gei™+ 1 +¢,) + (1 —1) (2c,— 2¢,(c5 —c3)) N3]
(10"7"'( ) Nl/k%) [—dic, NE+ (1+41) (26, (cg—§e}) —2¢,) N?]
— (iwn” (0) N¥/kb)[4+4c,(cg—3ed) N1
+ (iwy’(0) Nl/kz) [— 4i63N%+ (1—1) (2¢,—c3+1c}) N?)
+iwn(0) kép Ni[2¢2NE] =0, (A 47)

(iwdk},/ N's) [4(qe*i"+1+61+161) = (wn” YK [2¢2 NE]
+ (wn” (0) NE/KE) [ —dic, N3+ (1+1) (261(03 13) —2¢,) N¥]
+ (@ 77( )N‘/kz ) [4+ 40, (e;—3c3) VY]
—wn(0) B, N%[—4ic3 N+ (1—1) (2¢,— 3 +1ch) N#] = 0, (A 48)
and
(iwdky / N) [4(gedi™+ 1+ 6, +c5+362) N+ (141) (2¢,— 2¢, ¢4+ 263 +3eh + 2¢3) NE)
— (0" (0) N¥/K) [ —dicy N3+ (1—1) (2¢,+ 1t —c3) N3] — (iwy” (0) N¥/Ky) [23 NP
+ (iwn’(0 )Nz/kz [ —dic, NE+ (1+1) (— 26,420, (c;—§¢})) N¥]
+iwn(0) & N2[4:+4c‘1(6‘3—§63) Ni] =o0. (A 49)

(We note that the coefficients of the equations simplify considerably on use of the fact that

—2¢,=0.)

These equations are general for the unbaffled case and not specific to any given edge
constraint. With the equations in this form it is a relatively simple matter to substitute for the
known values of the two constants prescribed by any given edge constraint and then to solve
for the corresponding values of E,, E|, etc. In particular, for the unbaffled plate with a free
edge, we obtain

7(0) ~ —d[1—(10)} cot im es™],
I (0)/ox, ~ — (idk,/ N3)[1+i(10)}e™],
E, ~ (wdk, 104 e/ i) [1 — (1/2sin? it —3 —1a) N¥],
and E, ~ —(wd 10t es™ Nw/kf,) [1+O(NH].

(A 50)
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A.3. The Wiener—Hopf factorization of the kernel M (k) = (k2 —k2)t— i

In this Appendix we now pursue the multiplicative decomposition of M (k) into factors M, (k)
possessing the usual analyticity properties (that is the factors M, (k) are regular and non-zero
in R, respectively and have the convenient additional normalization M, (—k) = M_(k)).

An exact comparison of the incident, reflected and scattered wavepowers can only be made
if the values of |M (a)| and |M_(—k,cos 8)| are known.

Now
M) =y—pg and o= (@2+k2), (A 51)

where v is the ubiquitous acoustic square root function; whence,
My (k) = Ay [(ka)/ (k) Ly (), (A 52)
with A_ = A7'; the required normalization then fixes 4, :
A, = e 4", (A 53)

Since In L(y) satisfies the conditions of theorem B of Noble (1958) p. 15 (¢.v.), the factors
L, are given in terms of familiar Cauchy integrals:

_ 1 (=K} ] d¢ }
R R Ao
In particular L (o) = expl(a), (A 55)
1 (L2 —k2): ] d¢
where Ia) = o), ln[(tz—kg)%+/i i—a)’ (A 56)

and the contour of integration runs from — oo to oo in the strip of analyticity indented below
the pole at ¢t = a.

Referring to the discussion of Noble (1958, pp. 18-20), we see that the most useful of the
procedures adopted there is to deform the contour of integration into the upper half-plane
and on to the sides of the branch cut which consists of the real axis from £, to 0 and the positive
imaginary axis. (See figure 3.) However, since |a| > ,, the indentations shown in the figure are
superfluous and instead a residue contribution, associated with the pole at ¢ = a, is incurred.
We find that the integrals on opposite sides of the branch line combine to give

1 (® yarccot (k2+y2)t/iidy
I(@) = Ink+-
(a) nZ+nJ; | (PP +a?)

\ 2 2\ . 2 2\4/7
IJ"‘ arccot (k§—x”)2/judx _lﬁfm arccot (ko +4%) /,udy. (A 57)
. )

" (a—x) T (y2+a?)

Some additional manipulation and evaluation of certain elementary integrals, which arise
therefrom, yield

Lfa+k)] o« (%%  arctanfds . 20 [® arctan £ d¢
I(@) =3in|z—2) |- -yl R e vy b
2\a—k, 2r ), (t+1) (k2—ptt): T g (1) (Pt —K3):

(A 58)
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4 Im k&
N
- V4 ~ -
- // ~
v
/ g AN N
% % N\
/ 4 N
/ y=—ith3+ytl o Lleo- y=itki+y} \\
7
/ . \
/ 1| \
/ g; r"‘y=i(k?,-—x2y}\ \
’ 1 \
L, r 7 v !
—kq o e Rek

-y =—ilki—z*)!

F1oure 3. The complex plane showing the path, 4, onto which the original contour of integration, I', for the Cauchy
integral is deformed. I7 is the L-shaped branch cut associated with the acoustic square root function.

In the limit of vanishing compressibility z = a and then
I(a) = In/}—}ir. (A 59)

When this value is substituted into (A 55) and (A 52) in turn, the value of M (a) corresponding
to k, = 0 is revealed to be
M, (a) = (2a)te i, (A 60)

This result may be recovered by the logarithmic differentiation of the incompressible dispersion
function |k|— & (with |k| to be interpreted as ksgn Re k). We do not include the details, which
are rather mundane, here.

For arbitrary values of £,

RLYEIAY: [ ifsz arctan t}d¢ .
riw=[3GE) [or| %), mnm-mmloeier  @e

(A 62)

2a [* arctan ttd¢
where @ =—-%1t|:1——f ' ]

2 Sy (04 1) (@2t — k)

For our purposes the evaluation of @ is not vital since its value is not needed (explicitly) in
any of the energy balance calculations. Observing that

¥ arctantdt 0w o
L D) (=~ amr A% (A 63)

and hence, on using (4.20), (A 61) and (A 52), it emerges that
|R| = (1+k5/i*) 4. (A 64)
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340 D. G. CRIGHTON AND D. INNES
The evaluation of M_(—k,cos @) is similar. We find that
|M_(—kqycos 0)| = (a+ k, cos 0)z. (A 65)

Substitution of this value into the integral expression for the radiated power leads to integrands
that are easily evaluated in terms of elementary functions by reference to Gradshteyn & Ryzhik

(1965).

A.4. The Wiener—Hopf factorization for the oblique incidence kernel

The kernel which arises in §6 in connection with the oblique incidence of surface waves on
the edge of a membrane is

K(k, sin6,) = [k2— (k% —«2sin26,)] [k>— (k2—«?sin 6,) ]} — pk?,. (A 66)
In the heavy fluid loading limit,
wlky = ®/M with o = 0(1) and M < 1.
Furthermore, in this limit, x ~ k,, o/ M?. Thus,

K(k, sin0,) ~ (k2 a3/ M) A (1, sin 6,), (A 67)

where A (1,5in 0,) = (2 +sin20,) (£ +sin®Gy) —1, (A 68)
with £ = «t.
To remove the zeros of (¢, sin6,) it is convenient to introduce the function

L(t) = [(#+5in%6,) (£ +sin26,)i—1] (12— cos?0,) ~?, (A 69)
and then
A, (t,sinb,) = A, (t+cosb,) L, (2), (A 70)

where A4, is an arbitrary constant.

Although L(¢) increases as |t| tends to infinity in the strip of analyticity, it is still possible to
apply the decomposition theorems to L(t) directly provided that the integrals which occur are
understood in the sense

- fw In L(k) dk
(k—1)

A—»o0 Jig—A4

(cf. Levine & Schwinger 1948, §v and Appendix B). Bearing this in mind,

L. (1) = expF,(t), (A71)
with
L1 (R [(R+sin?6,) (k2+sin200)%—1] dk }
E) = Il;_)nolo {21ci J_RHG ln[ k®—cos? 6, (k=) (AT

First we require the value of F, (isin6,). Deform the countour of integration on to the sides
of the vertical branch cut stretching from isin 6, to infinity in the upper half-plane. The result

is that ) )
sinf@ {® arctan£d¢

F(isindo) == | firsm? )k

(A 73)

and we have been unable to evaluate this integral.
A similar evaluation of F,(cos6,) can be achieved; in this case we also pick up a residue
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contribution when the pole at ¢ = cos 6, is crossed in the contour deformation, but the procedure
is straightforward and leads to

F,(cos0;) = In3— 50000500 . J Risinfo arctan [sin® 0y (u* — 1)} du
+ o/ — e -

Row J1 (u®sin® 6, + cos®6,)

1. R/sinbo y5in? f arctan [sin® 6,(u2—1)¥]du (B &
+=1 0 . 0 . K .
n Rl—lllo {J; (u®sin® 6, + cos? 6,) fl % d"} (A 74)

We shall not go into details, but simply state that prolonged manipulation of the integrals is
fruitful and ultimately yields

. - .
F,(cosf,) =In \/g_lcos eof arctan ¢t#d¢

2 J, (t4+1) (t+sin26,)F (A 75)

Moreover, using (A 75) and (A 73) in conjunction with (A 72) and (A 70) supplies the required
expressions for A", (cos ;) and X, (isin6,), namely

3

Ry e icos, (®  arctantids
K, (kcosb,) = Vi 62cos G, expi — on ), GH1D) (i+sin?0) (A 76)
and
. B sin@, (© arctan¢idt
K+(1KSIH 00) = Fn]:.e%m eifo exp{ 2n°J1) t(t+sin2 00)%}, (A 77)

where we have replaced o/ M? by 1/N*% as appropriate in the low-frequency limit.
These two expressions and the angle of phase shift, ®, may be written in a more convenient
form by introducing the integral /(1) defined by

1 J“’ arctan 4 du

) = on ), (u+A) (u+sin® 0,)t

(A 78)
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